HOMEWORK 11 - DUE 12/6/17

MATH 511
(1) In this problem, we will show how to construct the positive rational numbers from multiplication on the positive integers. You may assume all standard properties of \mathbb{Z} and multiplication, but you are not allowed to use division.

Define the relation \sim on $\mathbb{Z}_{>0} \times \mathbb{Z}_{>0}$ by

$$
(a, b) \sim(c, d) \Longleftrightarrow a \cdot d=b \cdot c .
$$

(a) Prove that \sim is an equivalence relation.

We now let $\mathbb{Q}_{>0}$ denote the quotient set $\left(\mathbb{Z}_{>0} \times \mathbb{Z}_{>0}\right) /$ 。 A fraction p / q is given by the equivalence class $[(p, q)]$.
(b) Prove that multiplication in $\left(\mathbb{Z}_{>0} \times \mathbb{Z}_{>0}\right) / \sim$ is well-defined via the formula

$$
[(a, b)] \cdot[(c, d)]=[(a c, b d)] .
$$

In other words, you must show the following: Suppose that $\left(a_{1}, b_{1}\right) \sim\left(a_{2}, b_{2}\right)$ and $\left(c_{1}, d_{1}\right) \sim$ $\left(c_{2}, d_{2}\right)$, then $\left(a_{1} c_{1}, b_{1} d_{1}\right) \sim\left(a_{2} c_{2}, b_{2} d_{2}\right)$.
(c) Prove that $[(1,1)] \in \mathbb{Q}$ is a multiplicative unit; i.e. $[(1,1)] x=x$ for all $x \in \mathbb{Q}$.
(2) (I talked about this in class two weeks ago, but I am asking you to supply a complete proof now.) Suppose \sim is an equivalence relation on X, and $f: X \rightarrow Y$ is a function. Let $\pi: X \rightarrow X / \sim$ be the natural quotient map.
(a) Show there exists a function $\bar{f}: X / \sim \rightarrow Y$ satisfying $\bar{f} \circ \pi=f$ if and only if $f\left(x_{1}\right)=f\left(x_{2}\right)$ whenever $x_{1} \sim x_{2}$.

(b) Show that if such an \bar{f} exists, it is unique.

