- 1.39. A set A of real numbers is said to be bounded from above if there exists a number M such that $x \le M$ for every x in A. (Such a number M is called an upper bound of M.)
 - (a) Suppose A and B are sets which are bounded from above with respective upper bounds M_1 and M_2 . What can be said about the union and intersection of A and B?
 - (b) Suppose C and D are sets of real numbers which are unbounded. What can be said about the union and intersection of C and D?
 - (a) Both the union and intersection are bounded from above. In fact, the larger of M_1 and M_2 is always an upper bound for $A \cup B$, and the smaller of M_1 and M_2 is always an upper bound for $A \cap B$.
 - (b) The union of C and D must be unbounded, but the intersection could be either bounded or unbounded.
- 1.40. Restate the Principle of Mathematical Induction I and II in terms of sets, rather than assertions.
 - (a) Principle of Mathematical Induction I: Let S be a subset of $P = \{1, 2, ...\}$ with two properties:

(1) $1 \in S$. (2) If $n \in S$, then $n + 1 \in S$.

Then $S = \mathbf{P}$.

(b) Principle of Mathematical Induction II: Let S be a subset of $P = \{1, 2, ...\}$ with two properties:

Then
$$S = P$$
.

Homework 9/13

Text \$13 \text{ p33 \cdots} 6 \quad \quad

SETS AND SUBSETS

1.41. Which of the following sets are equal?

$$A = \{x : x^2 - 4x + 3 = 0\}$$
 $C = \{x : x \in \mathbf{P}, x < 3\}$ $E = \{1, 2\}$ $G = \{3, 1\}$
 $B = \{x : x^2 - 3x + 2 = 0\}$ $D = \{x : x \in \mathbf{P}, x \text{ is odd}, x < 5\}$ $F = \{1, 2, 1\}$ $H = \{1, 1, 3\}$

List the elements of the following sets if the universal set is $U = \{a, b, c, ..., y, z\}$. Furthermore, identify which of the sets, if any, are equal.

$$A = \{x : x \text{ is a vowel}\}$$
 $C = \{x : x \text{ precedes f in the alphabet}\}$
 $B = \{x : x \text{ is a letter in the word "little"}\}$ $D = \{x : x \text{ is a letter in the word "title"}\}$

1.43. Let

$$A = \{1, 2, \dots, 8, 9\}, \qquad B = \{2, 4, 6, 8\}, \qquad C = \{1, 3, 5, 7, 9\}, \qquad D = \{3, 4, 5\}, \qquad E = \{3, 5\}$$

Which of the above sets can equal a set X under each of the following conditions?

- (a) X and B are disjoint. (c)
 - (c) $X \subseteq A$ but $X \not\subseteq C$.
- (b) $X \subseteq D$ but $X \not\subseteq B$.
- (d) $X \subseteq C$ but $X \not\subseteq A$.

Consider the following sets:

$$\emptyset$$
, $A = \{a\}$, $B = \{c, d\}$, $C = \{a, b, c, d\}$, $D = \{a, b\}$, $E = \{a, b, c, d, e\}$.

Insert the correct symbol, \subseteq or $\not\subseteq$, between each pair of sets:

- $(a) \varnothing, A$
- (c) A, B
- (e) B, C
- (g) C, D

- (b) D, E
- (d) D, A
- (f) D, C
- (h) B, D

SET OPERATIONS

1.45. Let $U = \{1, 2, 3, ..., 8, 9\}$ be the universal set and let:

$$A = \{1, 2, 5, 6\}, \qquad B = \{2, 5, 7\}, \qquad C = \{1, 3, 5, 7, 9\}$$

Find: (a) $A \cap B$ and $A \cap C$, (b) $A \cup B$ and $A \cup C$, (c) A^c and C^c .

- For the sets in Problem 1.45, find: (a) $A \setminus B$ and $A \setminus C$, (b) $A \oplus B$ and $A \oplus C$.
- **1.47.** For the sets in Problem 1.45, find: (a) $(A \cup C) \setminus B$, (b) $(A \cup B)^c$, (c) $(B \oplus C) \setminus A$.
- **1.48.** Let $A = \{a, b, c, d, e\}$, $B = \{a, b, d, f, g\}$, $C = \{b, c, e, g, h\}$, $D = \{d, e, f, g, h\}$. Find:
 - (a) $A \cup B$
- (c) $B \cap C$
- (e) $C \setminus D$
- $(g) A \oplus B$

- (b) $C \cap D$
- (d) $A \cap D$
- (f) $D \setminus A$
- (h) $A \oplus C$
- 1.49. For the sets in Problem 1.48, find:
 - (a) $A \cap (B \cup D)$
- (c) $(A \cup D) \setminus C$
- (e) $(C \setminus A) \setminus D$
- $(g) (A \cap D) \setminus (B \cup C)$

- (b) $B \setminus (C \cup D)$
- (d) $B \cap C \cap D$
- $(f) (A \oplus D) \backslash B$
- $(h) (A \setminus C) \cap (B \cap D)$
- **1.50.** Let A and B be any sets. Prove $A \cup B$ is the disjoint union of $A \setminus B$, $A \cap B$, and $B \setminus A$.
- 1.51. Prove the following:
 - $((a)) \subseteq B$ if and only if $A \cap B^c = \emptyset$
- (c) $\subseteq B$ if and only if $B^c \subseteq A^c$
- (b) $A \subseteq B$ if and only if $A^c \cup B = U$ (d) $A \subseteq B$ if and only if $A \setminus B = \emptyset$

(Compare with Theorem 1.3.)

- 1.52. Prove the absorption laws: (a) $A \cup (A \cap B) = A$, (b) $A \cap (A \cup B) = A$.
 - The formula $A \setminus B = A \cap B^c$ defines the difference operation in terms of the operations of intersection and 1.53. complement. Find a formula that defines the union $A \cup B$ in terms of the operations of intersection and complement.
 - 1.54. (a) Prove: $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$.
 - (b) Give an example to show that $A \cup (B \setminus C) \neq (A \cup B) \setminus (A \cup C)$.
 - 1.55. Prove the following properties of the symmetric difference:
 - (a) $A \oplus (B \oplus C) = (A \oplus B) \oplus C$ (Associative law)
 - (b) $A \oplus B = B \oplus A$ (Commutative law)
 - (c) If $A \oplus B = A \oplus C$, then B = C (Cancellation law)
 - (d) $A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$ (Distributive law)