
Math 512 Syllabus
Spring 2019, LIU Post

Week Class Date Material

1 1/28 ISBN, error-detecting codes
HW: Exercises 1.1, 1.3, 1.5
Find the multiplicative inverse for all non-zero elements of F11

Show that ISBN-13 need not detect adjacent swaps

2 2/4 Error probability, Repetition Codes, Hamming square code
HW: Exercises 1.7-1.9, 1.14-1.16 (linear part optional)
Calculate the probabilities of transmitting strings error-free
using the [3, 1]-repetition and the Hamming Square codes.
(You may assume both correct 1 error.) For specific values of p,
compare with sending strings with no encoding.

3 2/11 Linear Algebra over finite fields,
the beginning of Linear Codes (§2.1, §2.3-2.6).
HW: Problem written on board (list all codewords),

and #1 and #10 from “Homework 3” handout.

4 2/19 Hamming [7, 4] code (§1.7)
Linear Codes (§2.1, §2.3-2.6)
HW: 4, 5c, 6, and 7 from “Homework 3” handout.

5 2/25 Generator, Parity matrices
Homework 5 handout

6 3/4 Quiz 1
Weights, distances, and detection/correction.
HW: Homework 6 handout

3/11 Spring Break

7 3/18 Review, Probabilities
HW: Updated HW 6 handout

8 3/25 Quiz 2, Polynomial Intro
HW: Homework 7 handout

9 4/1 Galois Fields
HW: Homework 8 handout

10 4/8 Polynomial Codes
HW: Homework 9 handout

11 4/15 Cyclic Codes
HW: Homework 10 handout

12 4/22 Quiz 3

13 4/29 Reed–Solomon Codes

5/6 Presentations of Final Projects

https://en.wikipedia.org/wiki/International_Standard_Book_Number


Linear algebra info - MTH 512

In a linear algebra course, one is primarily concerned with linear maps between vector spaces.
A map is linear if it is compatible with both vector addition and scalar multiplication.

Definition 0.1. A vector space over a field F is a set V equipped with binary operations + (vector
addition) and · (scalar multiplication)

V × V +→ V, F× V ·→ V

satisfying the following axioms (for all v,w,x ∈ V and r, s ∈ F):
1. v + w = w + v (addition commutative)
2. (v + w) + x = v + (w + x) (addition associative)
3. ∃ 0 ∈ V such that v + 0 = v for all v (additive identity)
4. ∀ v ∈ V, ∃ (−v) ∈ V such that v + (−v) = 0 (additive inverse)
5. r(v + w) = rv + rw (distributive)
6. (r + s)v = rv + sv (distributive)
7. r(sv) = (rs)v (scalar associative)
8. 1v = v (scalar identity)

Example 0.2. Fn
p = {(x1, . . . , xn)

∣∣∣ xi ∈ Fp}.
More specifically, consdier the vectors (0, 1, 2, 0), (1, 0, 2, 1) ∈ F4

3. Then

(0, 1, 2, 0) + (1, 0, 2, 1) = (1, 0, 1, 1), 2(0, 1, 2, 0) = (0, 2, 1, 0), 0(0, 1, 2, 0) = (0, 0, 0, 0).

Definition 0.3. Let V be a vector space and W ⊂ V a subset. Then V is a subspace (or vector
subspace or linear subspace) if

u,v ∈W ⇒ ru + sv ∈W.

Definition 0.4. Let V,W be vector spaces. A map T : V →W is linear if

T (rv + sw) = rT (v) + sT (w)

for all v,w ∈ V and r, s ∈ F. A linear map T is injective if it is one-to-one, surjective if it is onto,
and an isomorphism if it is a bijection.

Definition 0.5. Given a linear map T : V →W ,

Kernel Ker(T ) := {v ∈ V
∣∣∣ T (v) = 0 ∈W} ⊆ V,

Image Image(T ) := {T (v) ∈W
∣∣∣ v ∈ V } ⊆W.

Proposition 0.6. The Kernel and Image of a linear map are vector subspaces.

Definition 0.7. Let V be a vector space over F . A finite collection of vectors B = {v1, . . . ,vn} ⊆ V
is a basis of V if the induced linear map

Fn −→ V

(r1, . . . , rn) 7−→ r1v1 + r2v2 + · · · rnvn

is an isomorphism. In such a case, we say the dimension of V is dim(V ) = n.

Theorem 0.8 (Rank-Nullity). If T : V →W is a linear map (and V is finite-dimensional), then

dim Ker(T ) + dim Image(T ) = dimV.



Math 512 - “Homework 3”
Due February 19, 2019

1. Use row reduction/Gaussian elimination to solve the following system of linear equations
over R. Also, solve them over F5.{

x+ 3y = 0

3x+ y + 2z = 0

2. Let

C =

{
(x1, . . . , x10) ∈ F10

11

∣∣∣ 10∑
i=1

ixi = 0

}
⊂ F10

11,

and let ISBN ⊂ F10
11 be the subset of numbers which are ISBN numbers for some published

book.
(a) What is the relationship between C and ISBN?
(b) Determine whether C and/or ISBN are linear codes.

3. (a) Create your own example of a linear code. Explain/show why it is linear.
(b) Create your own example of a non-linear code. Explain/show why it is non-linear.

4. Consider the [6, 3] linear code given on p. 12 of “Error-correcting codes” and discussed in
class.
(a) Write the generator matrix G for this encoding.
(b) Use the generator matrix to send the message 101.
(c) You receive the message 011010. Correct this if necessary/possible.
(d) Construct the parity matrix H. Try to do this by writing the equations that any valid

codeword must satisfy.
(e) UsingH, determine whether the following are valid codewords: 101101, 011010, 100011.
(f) Calculate the matrix product GHT .

5. This problem concerns Hamming’s [7, 4]-code.
(a) Write the parity matrix H, and use this to write the generator matrix G.
(b) Write the digits of 3.14 as 4-bit binary numbers, and encode each of them.
(c) You receive the following message: 1001011, 0101111, 1101001, 1110010. Correct and

decode the message.
(d) List all codewords of Hamming’s [7, 4]-code.

6. Consider the q-ary repetition code code of type [6, 2], given by taking 2 elements of Fq and
repeating each of them 3 times.
(a) Write the generator matrix G and a parity matrix H.
(b) Calculate GHT .



7. Let C be a binary linear code with generator matrix

G =

[
1 1 1 1 0
0 0 1 1 1

]
.

List all the codewords in C. (You can do this by encoding all vectors in F2
2.)

8. (optional) Consider working over the field F5. Which of the following two matrices would
be a valid generating matrix G? Explain your answer. What problem would one of them
cause?

G1 =

[
1 3 0
3 1 2

]
, G2 =

1 3
3 1
0 2


9. Let Gkn be an k×n matrix with entries in Fq. Show that the set of vectors y ∈ Fn

q , satisfying

y = xG for some x ∈ Fk
q , determines a linear code.

(Hint: We need to show that C = {xG ∈ Fn
q

∣∣∣ x ∈ Fk
q} is a linear subspace of Fn

q . To do

this: assume y1, y2 ∈ C, and then prove ay1 + by2 ∈ C.)

10. Let H be matrix with entries in Fq. Show that the set of vectors y satisfying yHT = 0
determines a linear code. In order for this to make sense, what is the relationship between
the length of y and the dimensions of H?

11. For your edification, read the brief story of transmission of photographs from deep-space,
taken from Hill’s “A first course in coding theory,” which you can see by clicking here. (You
don’t have to do the Exercises.)

http://myweb.liu.edu/~dredden/512s19/SpacePhotos.pdf


Math 512 - Homework 5
Due March 4, 2019

Next week’s quiz will be, essentially, #1 parts a,b,c.

1. This problem concerns Hamming’s [7, 4]-code.
(a) Write the parity matrix H, and use this to write the generator matrix G.
(b) Write the digits of 3.14 as 4-bit binary numbers (eg 3 = 0011, 4 = 0100 etc), and

encode each of them.
(c) You receive the following message: 1001011, 0101111, 1101001, 1110010. Correct and

decode the message.
(d) List all codewords of Hamming’s [7, 4]-code.

2. Let C be a binary linear code with generator matrix

G =

[
1 1 1 1 0
0 0 1 1 1

]
.

Write a parity matrix H for the code.

3. Write the generator matrix and parity matrix for the ISBN-10 code.

4. Write the generator and parity matrix for the Hamming [9, 4] square code.

5. (optional) Consider working over the field F5. Which of the following two matrices would
be a valid generating matrix G? Explain your answer. What problem would one of them
cause?

G1 =

[
1 3 0
3 1 2

]
, G2 =

1 3
3 1
0 2





Math 512 - Homework 6
Due March 18, 2019

(Additional problems for Homework 7 are added with a * on them. For probabilities, assume we
are transmitting across a noisy memoryless symmetric binary channel with symbol error p.)

1. Calculate the minimum distance of the Hamming [9, 4] square code (the one where you
input a 2x2 matrix and output a 3x3 matrix). Since there are only 24 = 16 codewords,
you can just explicitly list them and determine their weights. How many errors can you
detect/correct? Write the weight enumerator polynomial.

* What is the probability that a codeword is received with no errors? What is the
probability that a codeword, after the error-correction procedure, is the original codeword
sent? What is the probability there is an undetected error?

2. Compute the weight enumerator for the [n, 1]-repetition code. How many errors can you
detect? How many errors can you correct?

* What is the probability that a codeword is received with no errors? What is the prob-
ability that a codeword, after the error-correction procedure, is the original codeword sent?
What is the probability there is an undetected error?

3. The weight enumerator for the [4, 2]-repetition code is related to the weight enumerator for
the [2, 1]-repetition code. How? Can you guess how this generalizes?

4. Consider the [5, 2]-code given in class (the one where I handed out the standard array; you
can use that table).
(a) Correct the message 01010, 11011, 11101.
(b) Give an example (or multiple) of introducing 2 errors to a valid codeword, using the

standard array to correct, and producing a different codeword than what you started
with.

5. Consider the binary [6, 3] linear code with

G =

1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

 .
We have already determined its minimal distance is d = 3.
(a) Construct the parity matrix H. (You did this in HW 3; you can just recopy if you

want.)
(b) Set up a table for syndrome decoding. (Note that to do syndrome decoding, you

only have to list the coset leaders (elements in row with minimal weight) and their
syndrome.)

(c) Using your table, correct the message 011010, 001110, 100001, 011110, 101111.
* Calculate the weight enumerator polynomial for this code. What is the probability of

there being an undetected error? Suppose that, any time we receive a word that doesn’t
have a unique closest word (i.e. it is not in the “correctable” portion of our syndrome
decoding table) we ask for it to be retransmitted. What is the probability a word will have
to be retransmitted?



Math 512 - Homework 7
Due April 1, 2019

1. Show the polynomial x2 + x+ 1 ∈ F2[x] has no roots by plugging in in x = 0 and x = 1.

2. Perform the following multiplication: (x3 + x2 + 1)(x+ 1) ∈ F2[x].

3. In F2[x], x5 + x2 + x+ 1 = (x2 + 1)g(x). Find g(x).

4. In F2[α], use polynomial division to write α7 as f(α)(α4 +α+ 1) + g(α), where deg(g) ≤ 3.

Hint: Compute
α7

α4 + α+ 1



Math 512 - Homework 8
Due April 8, 2019

1. Let ∼ be the equivalence relation on Z defined by

x ∼ y if y − x = 2n for some n ∈ Z.
Prove that ∼ is reflexive (x ∼ x for all x ∈ Z) and symmetric (if x ∼ y then y ∼ x).

2. Let g = g(x) ∈ Z[x] be a polynomial. Define an equivalence relation ∼ on Z[x] by

f1 ∼ f2 if f2 − f1 = g · h for some h = h(x) ∈ Z[x].

Prove that ∼ is transitive. (The proof follows the exact same logic and format as the proof
of transitivity we did in class.)

3. Make a chart (as described in class) that calculates αk in

F8 = F2[α]
/ (

1 + α+ α3
)
.

You can stop when you reach αn = 1 for some n > 1.

4. Make a chart (as described in class) that calculates αk in

F16 = F2[α]
/ (

1 + α+ α4
)
.

You can stop when you reach αn = 1 for some n > 1.

5. Using the model of F16 from the previous problem, calculate

α4 + α8 and (α2 + α3)(1 + α2).



Math 512 - Homework 9
Due April 15, 2019

1. Consider the generating polynomial g(x) = 1+x2+x3 ∈ F2[x]/(x7+1). This is the example
we did in the first half of class (though I didn’t write the quotient part until later).
(a) Encode the “message” 1 + x2.
(b) By considering the polynomial code as a linear [7, 4]-code over F2 (as we did in class),

encode the message 1001.
(c) You receive the polynomial message x + x3 + x4 + x5. Use polynomial division to

determine if there is some f(x) such that f(x) · g(x) = x + x3 + x4 + x5. Can you
“decode” the message?

(d) Use polynomial division to find h(x) such that g(x)h(x) = x7 + 1 ∈ F2[x].

2. Consider the polynomial code over F8, given by the generating polynomial

g(x) = (x+ α5)(x+ α6) ∈ F8[x].

Here we use the explicit model F8 := F2[α]
/

(α3 +α+ 1). This determines a [7, 5]-code over
F8, or a [21, 15]-code over F2. Note: The polynomial g(x) is different than the one used in
class, but the concepts and the code behavior is the same.
(a) Use g(x) to encode the following string of 15 bits in a string of 21 bits:

000 010 000 101 100.

(b) Determine the generator matrix G of the corresponding linear [7, 5]-code over F8.
(c) Determine the generator matrix of the corresponding linear [21, 15]-code over F2.



Math 512 - Homework 10 (really 11)
Due April 22, 2019

1. Let f(x) ∈ F[x] and a ∈ F, where F is some field (e.g. R,F2,Q; This assures us polynomial
division will work well). Prove that (x− a) divides f in F[x] if and only if f(a) = 0.
Hint: We proved the if direction in class. To show the only if direction, use the fact that
the polynomial division algorithm will provide polynomials Q(x), R(x) ∈ F[x] with
deg(R) < deg(x− a) such that f(x) = Q(x) · (x− a) +R(x).

2. Consider the polynomial code in R7 = F2[x]/(x7 + 1) generated by g(x) = x+ 1.
(a) Write a generator matrix G for the induced cyclic [7, 6] code.
(b) Perform row reduction on the generator matrix G. (Note that while this changes how

one might perform the encoding, the set of all codewords does not change under these
row operations. Your row reduced generator matrix is still a generator matrix for the
same code.)

(c) Show the induced cyclic code is the same as the [7, 6] code given by adding a parity
bit to every codeword.

3. Consider the cyclic code generated by g(x) = 1 + x+ x3 ∈ R7 = F2[x]/(x7 + 1).
(a) Write a generator matrix G for the induced cyclic [7, 4] code.
(b) Swap the columns in the generator matrix G in the following way:

1 7→ 3, 2 7→ 1, 3 7→ 4, 4 7→ 2.

In other words, the third column in the new matrix will be the first column in the
original matrix. The new generating matrix from the previous part gives a code that
is equivalent, but not equal to the original code.

(c) Show this new code is the Hamming [7, 4] code. You can do this by performing row
reduction on the generator matrix from (b) and the generator matrix for the Hamming
[7, 4] code. Conclude that the Hamming code is equivalent to a cyclic code.

4. Consider g(x) = x2 ∈ F2[x]/(x3 − 1) = R3.
(a) Suppose we created a [3, 1] code C by using the corresponding generator matrix

G =
[
0 0 1

]
.

Show the induced code C is not cyclic.
(b) Show that x2 does not divide x3 − 1 in F2[x].
(c) Optional: In fact, show that x2 is a unit in R3, i.e. that x2 · f(x) = 1 ∈ R3 for some

f(x). Conclude that the ideal generated by x2 in R3 is equal to all of R3.
(d) Does this example contradict the following theorem that was stated in class?

Assume q is a power of p, and p - n. A linear code C ⊂ Fn
q is cyclic if and only if C is

induced by a generating polynomial g(x) ∈ Fq[x] such that g(x)h(x) = xn− 1 for some
h(x) ∈ Fq[x].


