HOMEWORK DUE MONDAY 12/11

MATH 615

Homework: \#3-\#5. Numbers \#1-\#2 optional, depending on if you need more work with change of basis problems.
(1) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear map given in standard coordinates by the matrix

$$
\left[\begin{array}{cc}
-1 & 6 \\
\frac{3}{2} & -1
\end{array}\right]
$$

Let $B=\{(1,0),(0,1)\}$ and $B^{\prime}=\{(-2,1),(2,1)\}$.
(a) Find the change of basis matrices $P_{B B^{\prime}}$ and $P_{B^{\prime} B}$ and use these to compute the matrix of T relative to B^{\prime} (i.e. the above matrix is $T_{B B}$, and use $P_{B B^{\prime}}$ and $P_{B^{\prime} B}$ to find $T_{B^{\prime} B^{\prime}}$).
(b) Use $T_{B^{\prime} B^{\prime}}$ to find the kernel and image of T.
(2) Let $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2}$ be given by

$$
T(p)=\left[\begin{array}{l}
p(0) \\
p(2)
\end{array}\right]
$$

(e.g. if $p=a+b x$, then $p(4)=a+b(4)=a+4 b$.)
(a) Find the matrix of T relative to the standard bases $B=\left\{1, x, x^{2}\right\}$ of \mathbb{P}_{2}, and $C=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ of \mathbb{R}^{2}.
(b) Find the matrix of T relative to the basis $A=\left\{1,1+x, 1+x+x^{2}\right\}$ of \mathbb{P}_{2} and $D=\{(1,1),(1,-1)\}$ of \mathbb{R}^{2}.
(3) Suppose that $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ satisfies

$$
T(1+x)=3\left(x+x^{2}\right), \quad T\left(x+x^{2}\right)=-\left(x^{2}+1\right), \quad T\left(x^{2}+1\right)=2\left(x+x^{2}\right)+\left(x+x^{2}\right)
$$

Calculate $\operatorname{Ker} T$ and $\operatorname{Im} T$.
(Hint: Find the matrix of T relative to the basis $\left\{1+x, x+x^{2}, x^{2}+1\right\}$, calculate kernel and image relative to that basis, then rewrite the kernel and image as polynomials.)
(4) Suppose $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ satisfies

$$
T(3,1)=5(3,1), \quad T(0,2)=-1(0,2)
$$

Find the matrix of T relative to the standard basis of \mathbb{R}^{2}.
(5) Suppose that a matrix $A, B \in \mathcal{M}_{n \times n}$ is diagonal; i.e. the entry in the i-th row, j-th column

$$
A_{i j}=\left\{\begin{array}{ll}
a_{i} & i=j \\
0 & i \neq j
\end{array} \quad B_{i j}= \begin{cases}b_{i} & i=j \\
0 & i \neq j\end{cases}\right.
$$

Prove that $A B$ is diagonal with $(A B)_{i i}=a_{i} b_{i}$.

