
NOTES FOR LINEAR ALGEBRA

CORBETT REDDEN

MATH 615, FALL 2015

1. Coordinates

Definition 1.1. Let C = {v1, . . . ,vn} be a collection of vectors in a vector space V . We say that C

• is linearly independent if (r1v1 + · · · rnvn = 0) ⇒ (r1 = · · · = rn = 0);
• spans V if for every v ∈ V , exists ri satisfying r1v1 + · · ·+ rnvn = v;
• is a basis for V if it is linearly independent and spans V .

Theorem 1.2. Let B = {v1, . . . ,vn} be a basis for the vector space V . Any vector v ∈ V can be expressed
uniquely as a linear combination of v1, . . . ,vn. In other words, there is a unique solution (r1, . . . , rn) to the
equation

r1v1 + · · ·+ rnvn = v.

Definition 1.3. Suppose B = {v1, . . . ,vn} be a basis for the vector space V . Then, for a vector v ∈ V ,
we say that the coordinates (or coordinate vector) of v with respect to the basis B is the unique vector
(r1, . . . , rn) ∈ Rn such that v =

∑
i rivi. We use the notation

[v]B = [r1v1 + · · ·+ rnvn]E = (r1, . . . , rn) =

r1...
rn

 .

Remark 1.4. The class textbook uses the notation RepB(v) instead of [v]B , and calls it the representation
of v with respect to the basis B.

Example 1.5. Rn has the canonical basis E = {e1, · · · , en} where ei = (0, . . . , 1, . . . , 0), and

[(x1, . . . , xn)]E =

x1

...
xn


Example 1.6. The vector space Pn has a standard basis {1, x, . . . , xn}, and

[
∑
i

aix
i]B = (a0, . . . , an).

Example 1.7. Let B = {(1, 2), (3, 1)} be a basis for R2. Then, to find the coordinates of an arbitary vector
(a, b) ∈ R2 with respect to B, we solve the equation

r1

[
1
2

]
+ r2

[
2
1

]
=

[
a
b

]
.[

1 3 a
2 1 b

]
 

[
1 0 − 1

5a + 3
5b

0 1 2
5a−

1
5b

]
Therefore,

[(a, b)]B =

[
− 1

5a + 3
5b

2
5a−

1
5b

]
.

More concretely,

[(5, 5)]B =

[
2
1

]
.
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Note: the order of the vectors in the basis matters! Swapping the order will swap the corresponding columns
in the coordinate vector.

Example 1.8. Consider the subspace V of M2×2 with the basis

B =

{[
−1 0
2 0

]
,

[
0 1
1 0

]}
.

Then, the coordinate vector (5,−2) ∈ R2 represents the matrix

5

[
−1 0
2 0

]
− 2

[
0 1
1 0

]
=

[
−7 −2
8 0

]
relative to the basis B.

To find the coordinates of

[
2 1
−3 0

]
relative to B, we solve
−1 0 2
0 1 1
2 1 −3
0 0 0

 


1 0 −2
0 1 1
0 0 0
0 0 0


and conclude that the coordinate vector is (−2, 1) ∈ R2.

2. Linear maps

The previous examples are all examples of maps between vector spaces. Given a finite-dimensional vector
space V with basis B, we have a function (or mapping) that associates to any vector v ∈ V a vector in Rn:

Rn []B←− V

[v]B ←− [ v

More generally, whenever we have collection of vectors B = {v1, . . . ,vn} (not necessarily a basis), we can
define a linear map given by taking linear combinations:

V
LC←− Rn∑

i

rivi ←− [ (r1, . . . , rn)

Remark 2.1. The book (and probably all of your previous textbooks) would usually write the above as
[]B : V → Rn and LB : Rn → B which are read left to right. We will use the “right to left” notation. While
it is a little confusing at first, it will be much more convenient later in the course when encountering function
composition and matrix multiplication.

Definition 2.2. Let V and W be vector spaces. A function T from V to W , written T : V → W or

W
T←− V , is a rule that assigns to each vector v ∈ V a unique vector T (v) ∈W .

Vocabulary: In addition to the word function, and the words transformation and map or mapping are also

common; all have the same meaning. Given a function W
T← V ,

• V is called the domain and W is the target space or codomain.
• If w = T (v), then w is the image of v under T .
• The set of all images is called the image or range of T . The range may be a part of W or all of W .

Example 2.3. The function f(x) = x2 has domain and target space R.
A curve in the plane is a function R2 ← R, and a curve in R3 is a function R3 ← R. The domain is R in

both cases, and the target space is R2 and R3 respectively.
A vector field on the plane is a map R2 ← R2. The domain and target space are both R2.
Note that none of the above examples are assumed to be linear. The notions of domain/range/target

apply to functions in general and do not rely on vector space structures.
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Definition 2.4. A function W
T← V between vector spaces is linear if for all u,v ∈ V and r ∈ R,

T (rv) = r T (u) and T (u + v) = T (u) + T (v).

Lemma 2.5. If W
T← V is linear, then for all u,v ∈ V and a, b ∈ R:

(a) T (0) = 0 (b) T (−v) = −T (v) (c) T (au + bv) = a T (u) + b T (v).

and (c) extends to general linear combinations: T (
∑

aivi) =
∑

ai T (vi).

Proof.

T (0V ) = T (0v) = 0T (v) = 0W ,

T (−v) = T ((−1)v)) = (−1)T (v) = −T (v),

T (au + bv) = T (au) + T (bv) = aT (u) + bT (v).

�

Remark 2.6. The above lemma shows that T linear implies T (ru + sv) = rT (u) + sT (v). The converse is
also true, as demonstrated by setting r = 1, s = 1 or s = 0. Therefore, being linear is equivalent to

T (ru + sv) = rT (u) + sT (v)

being satisfied for all r, s ∈ R and u,v ∈ V .

Example 2.7. Matrix multiplication defines linear maps. Let A ∈ Mm×n be an m × n matrix. Then, A
defines a linear map

Rm A←−Rn

Ax←− [ x =

x1

...
xn

 .

Note that writing our function as moving right to left makes subcripts work out nicely. Vectors in Ra are
written as a× 1 matrices, and we have that Am×n inputs vectors in Rn and outputs vectors in Rm.

Example 2.8. The derivative is a linear map Ck−1(R)
d
dx← Ck(R),, where Ck(R) is the set of functions

R → R that are continuous and whose first k derivatives are also continuous. This follows from standard
properties of derivatives, as

d

dx
(rf + sg) =

d

dx
(rf) +

d

dx
(sg) = r

df

dx
+ s

dg

dx
.

Example 2.9. The linear map P3
T← P2 given by T (p) = (x + 1)p is linear. Check:

T (rp1 + sp2) = (x + 1)(rp1 + sp2) = r(x + 1)p1 + s(x + 1)p2

= rT (p1) + sT (p2).

Example 2.10. Given a basis B of V , the “coordinates” are really a linear map Rn ← V . Checking this is
linear is a homework assignment.

Lemma 2.11. Let B = {v1, . . . ,vn} be a basis for the vector space V . A linear transformation W
T← V is

determined by the values T (v1), . . . , T (vn); i.e.

(a) If we know T (vi) for all i, we can calculate T (v) for any vector v ∈ V .

(b) If W
S← V is a linear map so that S(vi) = T (vi) on each basis vector vi, then S(v) = T (v) for all

vectors v in V .

Proof. Given a basis B of V , any vector v ∈ V is uniquely written as v =
∑

i rivi. If T is a linear map, then

T (v) = T (
∑
i

rivi) =
∑
i

riT (vi),
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so T is completely determined by its values on the basis vectors. Similarly, if S is another linear map which
agrees with T on basis vectors, then

S(v) = S(
∑
i

rivi) =
∑
i

riS(vi) =
∑
i

riT (vi) = T (v).

�

3. Kernel, Image, and Isomorphisms

Definition 3.1. Let W
T←− V be any linear map. The kernel (or null space, nullity) and image (or range)

are subspaces Ker(T ) ⊆ V and Image(T ) ⊆W defined as follows:

• Ker(T ) = {v ∈ V
∣∣ T (v) = 0} ⊆ V ,

• Image(T ) = {T (v) ∈W
∣∣ v ∈ V } ⊆W .

Definition 3.2. A linear map W
T←− V is an isomorphism if there exists an inverse W

T−1

−−−→ V satisfying

T−1 ◦ T = idV , T ◦ T−1 = idW .

We say that V ∼= W , or V is isomorphic to W , if there exists an isomorphism between the two vector spaces.

Remark 3.3. We can conveniently use the commutative diagram

W
T−1

))
V

T

∼=ii

to encode this visually. The above diagram indicates that completing a “full loop” maps to the same element
you start with.

Proposition 3.4. A linear map W
T←− V is an isomorphism if and only if Ker(T ) = 0 and Image(T ) = W .

Example 3.5. Let A = {v1, . . . ,vn} be any collection of vectors in V . This defines a linear map

V
LA←−− Rn∑

i

rivi ←− [ (r1, . . . , rn)

given by taking linear combinations of the vectors vi. It is an instructive exercise to show the following:

• Ker(LA) = 0 if and only if {v1, . . . ,vn} is linearly independent.
• Image(LA) = W if and only if span(v1, . . . ,vn) = W .
• LA is an isomorphism if and only if {v1, . . . ,vn} is a basis for V .

If LA is an isomorphism, the inverse is the coordinate map [ ]A.

4. Coordinates of a linear map

Special Case: Let A ∈Mm×n be an m× n matrix, which is equivalent to a linear map

Rm A←−Rn
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn



x1

x2

...
xn

←− [


x1

x2

...
xn

 .

To understand what these numbers aij mean, let’s see where A maps basis vectors {e1, . . . , en}. Tracing
through matrix multiplication, we see that A(ej) is the j-th column of the matrix A. In other words,

A(e1) =


a11
a21
...

am1

 , A(e2) =


a12
a22
...

am2

 , . . . , A(en) =


a1n
a2n

...
amn

 .
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In other words, the columns of the matrix tell you the image of each basis vector in Rn. There are n columns
because there are n basis vectors in Rn. There are m rows because each vector in Rm is described via the
m basis vectors.

One we understand how matrix multiplication determines linear maps between the Euclidean vector spaces
Ri, we can use coordinates to better understand arbitrary linear maps in terms of matrix multiplication.

General Case: Let W
T←− V be a linear map, and let B be a basis for V and C a basis for W . This

gives the following commutative diagram and induces a map we call TCB .

W

[]C∼=
		

V
Too

[]B∼=
		

Rm

LC

HH

Rn

LB

HH

TCB

oo

This map Rm TCB←−−− Rn is simply multiplication by a m × n matrix, which we also denote by TCB . By
definition, this linear map must satisfy

TCB [v]B = [T (v)]C .

In other words, you can calculate the C-coordinates of T (v) by multiplying the B-coordinates of v by TCB .
To construct the matrix TCB , we just have to see where the vectors ei are mapped. Let B = {v1, . . . ,vn}
be our basis. Tracing through the definitions will give us the formula

TCB =

[T (v1)]C [T (v2)]C . . . [T (vn)]C

 .

Here, the elements [T (vj)]C are considered to be columns in our matrix with dimensions dimW × dimV .

Remark 4.1. The textbook uses the notation RepB,C(T ) for what we call TCB . It is essentially the same
thing, except we reverse the order of the subscripts B,C. Remember that in this notation, the input is
always occurs on the right, and the output is always on the left.

Example 4.2. Suppose that B = {(1, 1), (1,−1)} is a basis for R2 and C = {1, 1 + x, 1 + x + x2} is a basis

for P2. Let P2
T←− R2 be a linear map satisfying

T (1, 1) = 3(1) + 2(1 + x) + 0(1 + x + x2), T (1,−1) = 0(1) + 0(1 + x)− 5(1 + x + x2).

Then, the matrix representation of T with respect to the bases B and C is given by

TCB =

[T (1, 1)]C [T (1,−1))]C

 =

3 0
2 0
0 −5

 .

Suppose you want to know what T (5,−1) equals. First, we find the B-coordinates (by solving an equation
to show that)

2(1, 1) + 3(1,−1) = (5,−1) ⇒ [(5,−1)]B =

[
2
3

]
.

Then, we can find the C-coordinates of T (5,−1) by

[T (5,−1)]C = TCB [(5,−1)]B =

3 0
2 0
0 −5

[2
3

]
=

 6
4
−15

 .

Therefore,

T (5,−1) = 6(1) + 4(1 + x)− 15(1 + x + x2).
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5. Change of basis formulas

Suppose that we the representation of a linear map with respect to one set of coordinates, but we want
it with respect to different coordinates. What do we do? Is there a systematic way to deal with this type of
situation? YES!

Suppose A,B are two bases for V , and C,D are two bases for W , and W
T←− V is linear. Then, we have

W
[]D

∼=
ww

[]C∼=
��

V
Too

[]B∼=
��

[]A

∼=
''

Rm Rm

PDC

oo Rn

TCB

oo Rn

PBA

oo

The matrices PDC and PBA are called change of basis matrices and are determined by representing the
identity map with respect to two different bases. This gives the general formula

PBA =

[vA
1 ]B [vA

2 ]B . . . [vA
n ]B


where A = {vA

1 , . . . ,v
A
n }. These give the following important change of basis formulas:

TDA = PDCTCBPBA,

PAB = P−1
BA.

Composition of linear functions is also compatible with matrix multiplication. Specifically, suppose that
(S ◦ T ) is a composition of linear maps. Then

(S ◦ T )DB = SDCTCB .

Example 5.1. Consider Example 4.2 above. We had B = {(1, 1), (1,−1)}, C = {1, 1 + x, 1 + x + x2}, and

P2
T←− R2 with matrix

TCB =

3 0
2 0
0 −5

 .

What if we want the matrix of T with respect to the standard bases E = {e1, e2} and D = {1, x, x2}? We
can just compute the change of basis matrices.

PEB =

[(1, 1)]E [(1,−1)]E

 =

[
1 1
1 −1

]

PDC =

[1]D [1 + x]D [1 + x + x2]D

 =

1 1 1
0 1 1
0 0 1


Using our change of basis formulas, we have

TDE = PDCTCBPBE = PDCTCBP
−1
EB =

1 1 1
0 1 1
0 0 1

3 0
2 0
0 −5

[1 1
1 −1

]−1

=
1

2

 0 10
−3 7
−5 5


6. Calculating Kernel and Image

6.1. Finding Kernel and Image of a matrix.
Let A ∈Mm×n be a matrix. The kernel of A (or nullspace)

KerA = {x ∈ Rn
∣∣Ax = 0}
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is just the solution set to the system of homogeneous equations associated to the matrix A.
The Image (or range or column space) is

ImageA = {Ax
∣∣ x ∈ Rn} = {y ∈ Rm

∣∣ ∃x satisfying y = Ax},
and it is easy to show this equals the span of the columns of A.

To find a basis for the kernel and image of a matrix A:

(1) Using row reduction, put A in reduced row echelon form (RREF).
(2) Once A is in RREF, write down the set of solutions to the linear system. You will get a basis vector

for each column with a free variable (however the basis vector is not the column vector!).
(3) Image A has a basis given by the columns of A which, after row reduction, contain a pivot.

You will always have dim KerA = the number of free variables, and dim ImageA = number of pivots.

6.2. Finding Kernel and Image of a general linear map between finite-dimensional vector spaces.

KerT = {v ∈ V
∣∣ T (v) = 0} ⊆ V, ImageT = {w ∈W

∣∣w = T (v) for some v ∈ V } ⊆W.

(1) If T : Rn → Rm is a linear map given by T (x) = Ax, then KerT = KerA, and ImageT = ImageA.
You are done.

(2) For a general linear map T : V →W , choose bases B,C of V,W . Determine the matrix TCB , which
represents the linear map relative to the bases B and C.

(3) Find a basis for kernel/image of the matrix TCB .
(4) For each vector in the basis of KerTCB ⊂ Rn, map it to V by LB . Here,

LB(r1, . . . , rn) = r1v1 + · · · rnvn where B = {v1, . . . ,vn}.
(5) For each vector in the basis of ImageTCB ⊂ Rm, map it to W by LC .
(6) Note that dim KerT = dim KerTCB = # free variables, and

dim ImageT = dim ImageTCB = # pivots.

Remark 6.1. Equivalently, you can set up the equations

T (v) = 0, T (v) = w

and solve. Solutions v to the first equation are elements of KerT . Vectors w, such that there exists a
solution to the second equation, are elements of ImageT . In the process of solving, you will find yourself
(maybe without realizing it) going through the process given above.

Theorem 6.2 (Rank-Nullity). If T : V →W is linear, and V is finite-dimensional, then

dim KerT + dim ImageT = dimV.

Corollary 6.3. If T : V →W is linear, and V is finite-dimensional, then

dim KerT ≥ dimV − dimW,

dim ImageT ≤ dimV.

If T is one-to-one, then dimV ≤ dimW .
If T is onto, then dimV ≥ dimW .
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