NOTES FOR LINEAR ALGEBRA

CORBETT REDDEN
MATH 615, FALL 2015

1. Coordinates

Definition 1.1. Let $C=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a collection of vectors in a vector space V. We say that C

- is linearly independent if $\left(r_{1} \mathbf{v}_{1}+\cdots r_{n} \mathbf{v}_{n}=\mathbf{0}\right) \Rightarrow\left(r_{1}=\cdots=r_{n}=0\right)$;
- $\operatorname{spans} V$ if for every $\mathbf{v} \in V$, exists r_{i} satisfying $r_{1} \mathbf{v}_{1}+\cdots+r_{n} \mathbf{v}_{n}=\mathbf{v}$;
- is a basis for V if it is linearly independent and spans V.

Theorem 1.2. Let $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a basis for the vector space V. Any vector $\mathbf{v} \in V$ can be expressed uniquely as a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$. In other words, there is a unique solution (r_{1}, \ldots, r_{n}) to the equation

$$
r_{1} \mathbf{v}_{1}+\cdots+r_{n} \mathbf{v}_{n}=\mathbf{v}
$$

Definition 1.3. Suppose $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a basis for the vector space V. Then, for a vector $\mathbf{v} \in V$, we say that the coordinates (or coordinate vector) of \mathbf{v} with respect to the basis B is the unique vector $\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{R}^{n}$ such that $\mathbf{v}=\sum_{i} r_{i} \mathbf{v}_{i}$. We use the notation

$$
[\mathbf{v}]_{B}=\left[r_{1} \mathbf{v}_{1}+\cdots+r_{n} \mathbf{v}_{n}\right]_{\varepsilon}=\left(r_{1}, \ldots, r_{n}\right)=\left[\begin{array}{c}
r_{1} \\
\vdots \\
r_{n}
\end{array}\right]
$$

Remark 1.4. The class textbook uses the notation $\operatorname{Rep}_{B}(\mathbf{v})$ instead of $[\mathbf{v}]_{B}$, and calls it the representation of \mathbf{v} with respect to the basis B.

Example 1.5. \mathbb{R}^{n} has the canonical basis $\mathcal{E}=\left\{\mathbf{e}_{1}, \cdots, \mathbf{e}_{n}\right\}$ where $\mathbf{e}_{i}=(0, \ldots, 1, \ldots, 0)$, and

$$
\left[\left(x_{1}, \ldots, x_{n}\right)\right]_{\varepsilon}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Example 1.6. The vector space \mathcal{P}_{n} has a standard basis $\left\{1, x, \ldots, x^{n}\right\}$, and

$$
\left[\sum_{i} a_{i} x^{i}\right]_{B}=\left(a_{0}, \ldots, a_{n}\right)
$$

Example 1.7. Let $B=\{(1,2),(3,1)\}$ be a basis for \mathbb{R}^{2}. Then, to find the coordinates of an arbitary vector $(a, b) \in \mathbb{R}^{2}$ with respect to B, we solve the equation

$$
\begin{aligned}
r_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+r_{2}\left[\begin{array}{l}
2 \\
1
\end{array}\right] & =\left[\begin{array}{l}
a \\
b
\end{array}\right] . \\
{\left[\begin{array}{lll}
1 & 3 & a \\
2 & 1 & b
\end{array}\right] } & \rightsquigarrow\left[\begin{array}{ccc}
1 & 0 & -\frac{1}{5} a+\frac{3}{5} b \\
0 & 1 & \frac{2}{5} a-\frac{1}{5} b
\end{array}\right]
\end{aligned}
$$

Therefore,

$$
[(a, b)]_{B}=\left[\begin{array}{c}
-\frac{1}{5} a+\frac{3}{5} b \\
\frac{2}{5} a-\frac{1}{5} b
\end{array}\right]
$$

More concretely,

$$
[(5,5)]_{B}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Note: the order of the vectors in the basis matters! Swapping the order will swap the corresponding columns in the coordinate vector.

Example 1.8. Consider the subspace V of $\mathcal{M}_{2 \times 2}$ with the basis

$$
B=\left\{\left[\begin{array}{cc}
-1 & 0 \\
2 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right\}
$$

Then, the coordinate vector $(5,-2) \in \mathbb{R}^{2}$ represents the matrix

$$
5\left[\begin{array}{cc}
-1 & 0 \\
2 & 0
\end{array}\right]-2\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
-7 & -2 \\
8 & 0
\end{array}\right]
$$

relative to the basis B.
To find the coordinates of $\left[\begin{array}{cc}2 & 1 \\ -3 & 0\end{array}\right]$ relative to B, we solve

$$
\left[\begin{array}{ccc}
-1 & 0 & 2 \\
0 & 1 & 1 \\
2 & 1 & -3 \\
0 & 0 & 0
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and conclude that the coordinate vector is $(-2,1) \in \mathbb{R}^{2}$.

2. Linear maps

The previous examples are all examples of maps between vector spaces. Given a finite-dimensional vector space V with basis B, we have a function (or mapping) that associates to any vector $\mathbf{v} \in V$ a vector in \mathbb{R}^{n} :

$$
\begin{gathered}
\mathbb{R}^{n} \stackrel{[]_{B}}{4} V \\
{[\mathbf{v}]_{B} \longleftarrow \mathbf{v}}
\end{gathered}
$$

More generally, whenever we have collection of vectors $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ (not necessarily a basis), we can define a linear map given by taking linear combinations:

$$
\begin{gathered}
V \stackrel{L_{C}}{\longleftarrow} \mathbb{R}^{n} \\
\sum_{i} r_{i} \mathbf{v}_{i} \longleftrightarrow\left(r_{1}, \ldots, r_{n}\right)
\end{gathered}
$$

Remark 2.1. The book (and probably all of your previous textbooks) would usually write the above as $]_{B}: V \rightarrow \mathbb{R}^{n}$ and $L_{B}: \mathbb{R}^{n} \rightarrow B$ which are read left to right. We will use the "right to left" notation. While it is a little confusing at first, it will be much more convenient later in the course when encountering function composition and matrix multiplication.
Definition 2.2. Let V and W be vector spaces. A function T from V to W, written $T: V \rightarrow W$ or $W \stackrel{T}{\leftarrow} V$, is a rule that assigns to each vector $v \in V$ a unique vector $T(v) \in W$.

Vocabulary: In addition to the word function, and the words transformation and map or mapping are also common; all have the same meaning. Given a function $W \stackrel{T}{\leftarrow} V$,

- V is called the domain and W is the target space or codomain.
- If $\mathbf{w}=T(\mathbf{v})$, then \mathbf{w} is the image of \mathbf{v} under T.
- The set of all images is called the image or range of T. The range may be a part of W or all of W.

Example 2.3. The function $f(x)=x^{2}$ has domain and target space \mathbb{R}.
A curve in the plane is a function $\mathbb{R}^{2} \leftarrow \mathbb{R}$, and a curve in \mathbb{R}^{3} is a function $\mathbb{R}^{3} \leftarrow \mathbb{R}$. The domain is \mathbb{R} in both cases, and the target space is \mathbb{R}^{2} and \mathbb{R}^{3} respectively.

A vector field on the plane is a map $\mathbb{R}^{2} \leftarrow \mathbb{R}^{2}$. The domain and target space are both \mathbb{R}^{2}.
Note that none of the above examples are assumed to be linear. The notions of domain/range/target apply to functions in general and do not rely on vector space structures.

Definition 2.4. A function $W \stackrel{T}{\leftarrow} V$ between vector spaces is linear if for all $\mathbf{u}, \mathbf{v} \in V$ and $r \in \mathbb{R}$,

$$
T(r \mathbf{v})=r T(\mathbf{u}) \quad \text { and } \quad T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})
$$

Lemma 2.5. If $W \stackrel{T}{\leftarrow} V$ is linear, then for all $\mathbf{u}, \mathbf{v} \in V$ and $a, b \in \mathbb{R}$:
(a) $T(\mathbf{0})=\mathbf{0}$
(b) $T(-\mathbf{v})=-T(\mathbf{v})$
(c) $T(a \mathbf{u}+b \mathbf{v})=a T(\mathbf{u})+b T(\mathbf{v})$.
and (c) extends to general linear combinations: $T\left(\sum a_{i} \mathbf{v}_{i}\right)=\sum a_{i} T\left(\mathbf{v}_{i}\right)$.
Proof.

$$
\begin{gathered}
T\left(\mathbf{0}_{V}\right)=T(0 \mathbf{v})=0 T(\mathbf{v})=\mathbf{0}_{W} \\
T(-\mathbf{v})=T((-1) \mathbf{v}))=(-1) T(\mathbf{v})=-T(\mathbf{v}) \\
T(a \mathbf{u}+b \mathbf{v})=T(a \mathbf{u})+T(b \mathbf{v})=a T(\mathbf{u})+b T(\mathbf{v})
\end{gathered}
$$

Remark 2.6. The above lemma shows that T linear implies $T(r \mathbf{u}+s \mathbf{v})=r T(\mathbf{u})+s T(\mathbf{v})$. The converse is also true, as demonstrated by setting $r=1, s=1$ or $s=0$. Therefore, being linear is equivalent to

$$
T(r \mathbf{u}+s \mathbf{v})=r T(\mathbf{u})+s T(\mathbf{v})
$$

being satisfied for all $r, s \in \mathbb{R}$ and $\mathbf{u}, \mathbf{v} \in V$.
Example 2.7. Matrix multiplication defines linear maps. Let $A \in \mathcal{M}_{m \times n}$ be an $m \times n$ matrix. Then, A defines a linear map

$$
\begin{aligned}
& \mathbb{R}^{m} \stackrel{A}{\longleftarrow} \mathbb{R}^{n} \\
& A \mathbf{x} \longleftarrow \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] .
\end{aligned}
$$

Note that writing our function as moving right to left makes subcripts work out nicely. Vectors in \mathbb{R}^{a} are written as $a \times 1$ matrices, and we have that $A_{m \times n}$ inputs vectors in \mathbb{R}^{n} and outputs vectors in \mathbb{R}^{m}.

Example 2.8. The derivative is a linear map $C^{k-1}(\mathbb{R}) \frac{d}{d x} C^{k}(\mathbb{R})$,, where $C^{k}(\mathbb{R})$ is the set of functions $\mathbb{R} \rightarrow \mathbb{R}$ that are continuous and whose first k derivatives are also continuous. This follows from standard properties of derivatives, as

$$
\frac{d}{d x}(r f+s g)=\frac{d}{d x}(r f)+\frac{d}{d x}(s g)=r \frac{d f}{d x}+s \frac{d g}{d x} .
$$

Example 2.9. The linear map $\mathcal{P}_{3} \stackrel{T}{\leftarrow} \mathcal{P}_{2}$ given by $T(p)=(x+1) p$ is linear. Check:

$$
\begin{aligned}
T\left(r p_{1}+s p_{2}\right) & =(x+1)\left(r p_{1}+s p_{2}\right)=r(x+1) p_{1}+s(x+1) p_{2} \\
& =r T\left(p_{1}\right)+s T\left(p_{2}\right)
\end{aligned}
$$

Example 2.10. Given a basis B of V, the "coordinates" are really a linear map $\mathbb{R}^{n} \leftarrow V$. Checking this is linear is a homework assignment.

Lemma 2.11. Let $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a basis for the vector space V. A linear transformation $W \stackrel{T}{\leftarrow} V$ is determined by the values $T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)$; i.e.
(a) If we know $T\left(\mathbf{v}_{i}\right)$ for all i, we can calculate $T(\mathbf{v})$ for any vector $\mathbf{v} \in V$.
(b) If $W \stackrel{S}{\leftarrow} V$ is a linear map so that $S\left(\mathbf{v}_{i}\right)=T\left(\mathbf{v}_{i}\right)$ on each basis vector \mathbf{v}_{i}, then $S(\mathbf{v})=T(\mathbf{v})$ for all vectors \mathbf{v} in V.

Proof. Given a basis B of V, any vector $\mathbf{v} \in V$ is uniquely written as $\mathbf{v}=\sum_{i} r_{i} \mathbf{v}_{i}$. If T is a linear map, then

$$
T(\mathbf{v})=T\left(\sum_{i} r_{i} \mathbf{v}_{i}\right)=\sum_{i} r_{i} T\left(\mathbf{v}_{i}\right)
$$

so T is completely determined by its values on the basis vectors. Similarly, if S is another linear map which agrees with T on basis vectors, then

$$
S(\mathbf{v})=S\left(\sum_{i} r_{i} \mathbf{v}_{i}\right)=\sum_{i} r_{i} S\left(\mathbf{v}_{i}\right)=\sum_{i} r_{i} T\left(\mathbf{v}_{i}\right)=T(\mathbf{v})
$$

3. Kernel, Image, and Isomorphisms

Definition 3.1. Let $W \stackrel{T}{\leftarrow} V$ be any linear map. The kernel (or null space, nullity) and image (or range) are subspaces $\operatorname{Ker}(T) \subseteq V$ and Image $(T) \subseteq W$ defined as follows:

- $\operatorname{Ker}(T)=\{\mathbf{v} \in V \mid T(\mathbf{v})=\mathbf{0}\} \subseteq V$,
- Image $(T)=\{T(\mathbf{v}) \in W \mid \mathbf{v} \in V\} \subseteq W$.

Definition 3.2. A linear map $W \stackrel{T}{\leftarrow} V$ is an isomorphism if there exists an inverse $W \xrightarrow{T^{-1}} V$ satisfying

$$
T^{-1} \circ T=\operatorname{id}_{V}, \quad T \circ T^{-1}=\operatorname{id}_{W} .
$$

We say that $V \cong W$, or V is isomorphic to W, if there exists an isomorphism between the two vector spaces.
Remark 3.3. We can conveniently use the commutative diagram

$$
W \frac{T^{-1}}{\stackrel{\cong}{T}} V
$$

to encode this visually. The above diagram indicates that completing a "full loop" maps to the same element you start with.
Proposition 3.4. A linear map $W \stackrel{T}{\leftarrow} V$ is an isomorphism if and only if $\operatorname{Ker}(T)=\mathbf{0}$ and Image $(T)=W$.
Example 3.5. Let $A=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be any collection of vectors in V. This defines a linear map

$$
\begin{gathered}
V \stackrel{L_{A}}{\longleftarrow} \mathbb{R}^{n} \\
\sum_{i} r_{i} \mathbf{v}_{i} \stackrel{(}{\longleftrightarrow}\left(r_{1}, \ldots, r_{n}\right)
\end{gathered}
$$

given by taking linear combinations of the vectors \mathbf{v}_{i}. It is an instructive exercise to show the following:

- $\operatorname{Ker}\left(L_{A}\right)=\mathbf{0}$ if and only if $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is linearly independent.
- Image $\left(L_{A}\right)=W$ if and only if $\operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)=W$.
- L_{A} is an isomorphism if and only if $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for V.

If L_{A} is an isomorphism, the inverse is the coordinate map [] $]_{A}$.

4. Coordinates of a linear map

Special Case: Let $A \in \mathcal{M}_{m \times n}$ be an $m \times n$ matrix, which is equivalent to a linear map

$$
\begin{gathered}
\\
{\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
\mathbb{R}^{m} \stackrel{A}{x_{1}} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \longleftrightarrow\left[\begin{array}{c}
\mathbb{R}^{n} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] .}
\end{gathered}
$$

To understand what these numbers $a_{i j}$ mean, let's see where A maps basis vectors $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$. Tracing through matrix multiplication, we see that $A\left(\mathbf{e}_{j}\right)$ is the j-th column of the matrix A. In other words,

$$
A\left(\mathbf{e}_{1}\right)=\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right], \quad A\left(\mathbf{e}_{2}\right)=\left[\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right], \quad \ldots, \quad A\left(\mathbf{e}_{n}\right)=\left[\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right]
$$

In other words, the columns of the matrix tell you the image of each basis vector in \mathbb{R}^{n}. There are n columns because there are n basis vectors in \mathbb{R}^{n}. There are m rows because each vector in \mathbb{R}^{m} is described via the m basis vectors.

One we understand how matrix multiplication determines linear maps between the Euclidean vector spaces \mathbb{R}^{i}, we can use coordinates to better understand arbitrary linear maps in terms of matrix multiplication.

General Case: Let $W \stackrel{T}{\leftarrow} V$ be a linear map, and let B be a basis for V and C a basis for W. This gives the following commutative diagram and induces a map we call $T_{C B}$.

This map $\mathbb{R}^{m} \stackrel{T_{C B}}{\leftarrow} \mathbb{R}^{n}$ is simply multiplication by a $m \times n$ matrix, which we also denote by $T_{C B}$. By definition, this linear map must satisfy

$$
T_{C B}[\mathbf{v}]_{B}=[T(\mathbf{v})]_{C} .
$$

In other words, you can calculate the C-coordinates of $T(\mathbf{v})$ by multiplying the B-coordinates of \mathbf{v} by $T_{C B}$. To construct the matrix $T_{C B}$, we just have to see where the vectors \mathbf{e}_{i} are mapped. Let $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be our basis. Tracing through the definitions will give us the formula

$$
T_{C B}=\left[\begin{array}{llll}
{\left[T\left(\mathbf{v}_{1}\right)\right]_{C}} & {\left[T\left(\mathbf{v}_{2}\right)\right]_{C}} & \ldots & {\left[T\left(\mathbf{v}_{n}\right)\right]_{C}}
\end{array}\right]
$$

Here, the elements $\left[T\left(\mathbf{v}_{j}\right)\right]_{C}$ are considered to be columns in our matrix with dimensions $\operatorname{dim} W \times \operatorname{dim} V$.
Remark 4.1. The textbook uses the notation $\operatorname{Rep}_{B, C}(T)$ for what we call $T_{C B}$. It is essentially the same thing, except we reverse the order of the subscripts B, C. Remember that in this notation, the input is always occurs on the right, and the output is always on the left.

Example 4.2. Suppose that $B=\{(1,1),(1,-1)\}$ is a basis for \mathbb{R}^{2} and $C=\left\{1,1+x, 1+x+x^{2}\right\}$ is a basis for \mathcal{P}_{2}. Let $\mathcal{P}_{2} \stackrel{T}{\leftarrow} \mathbb{R}^{2}$ be a linear map satisfying

$$
T(1,1)=3(1)+2(1+x)+0\left(1+x+x^{2}\right), \quad T(1,-1)=0(1)+0(1+x)-5\left(1+x+x^{2}\right)
$$

Then, the matrix representation of T with respect to the bases B and C is given by

$$
T_{C B}=\left[\begin{array}{ll}
{[T(1,1)]_{C}} & [T(1,-1))]_{C}
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
2 & 0 \\
0 & -5
\end{array}\right]
$$

Suppose you want to know what $T(5,-1)$ equals. First, we find the B-coordinates (by solving an equation to show that)

$$
2(1,1)+3(1,-1)=(5,-1) \quad \Rightarrow \quad[(5,-1)]_{B}=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

Then, we can find the C-coordinates of $T(5,-1)$ by

$$
[T(5,-1)]_{C}=T_{C B}[(5,-1)]_{B}=\left[\begin{array}{cc}
3 & 0 \\
2 & 0 \\
0 & -5
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
6 \\
4 \\
-15
\end{array}\right]
$$

Therefore,

$$
T(5,-1)=6(1)+4(1+x)-15\left(1+x+x^{2}\right)
$$

5. Change of basis formulas

Suppose that we the representation of a linear map with respect to one set of coordinates, but we want it with respect to different coordinates. What do we do? Is there a systematic way to deal with this type of situation? YES!

Suppose A, B are two bases for V, and C, D are two bases for W, and $W \stackrel{T}{\leftarrow} V$ is linear. Then, we have

The matrices $P_{D C}$ and $P_{B A}$ are called change of basis matrices and are determined by representing the identity map with respect to two different bases. This gives the general formula

$$
P_{B A}=\left[\begin{array}{llll}
{\left[\mathbf{v}_{1}^{A}\right]_{B}} & {\left[\begin{array}{lll}
\mathbf{v}_{2}^{A}
\end{array}\right]_{B}} & \ldots & {\left[\mathbf{v}_{n}^{A}\right]_{B}}
\end{array}\right]
$$

where $A=\left\{\mathbf{v}_{1}^{A}, \ldots, \mathbf{v}_{n}^{A}\right\}$. These give the following important change of basis formulas:

$$
\begin{aligned}
& T_{D A}=P_{D C} T_{C B} P_{B A} \\
& P_{A B}=P_{B A}^{-1}
\end{aligned}
$$

Composition of linear functions is also compatible with matrix multiplication. Specifically, suppose that $(S \circ T)$ is a composition of linear maps. Then

$$
(S \circ T)_{D B}=S_{D C} T_{C B}
$$

Example 5.1. Consider Example 4.2 above. We had $B=\{(1,1),(1,-1)\}, C=\left\{1,1+x, 1+x+x^{2}\right\}$, and $\mathcal{P}_{2} \leftarrow \mathbb{R}^{2}$ with matrix

$$
T_{C B}=\left[\begin{array}{cc}
3 & 0 \\
2 & 0 \\
0 & -5
\end{array}\right]
$$

What if we want the matrix of T with respect to the standard bases $\mathcal{E}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ and $D=\left\{1, x, x^{2}\right\}$? We can just compute the change of basis matrices.

$$
\left.\begin{array}{l}
P_{\mathcal{E} B}=\left[\begin{array}{ll}
{[(1,1)]_{\mathcal{E}}} & {[(1,-1)]_{\mathcal{E}}}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
P_{D C}=\left[\begin{array}{ll}
{[1]_{D}} & {[1+x]_{D}}
\end{array}\right]\left[1+x+x^{2}\right]_{D}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] .
$$

Using our change of basis formulas, we have

$$
T_{D \varepsilon}=P_{D C} T_{C B} P_{B \varepsilon}=P_{D C} T_{C B} P_{\mathcal{E} B}^{-1}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cc}
3 & 0 \\
2 & 0 \\
0 & -5
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]^{-1}=\frac{1}{2}\left[\begin{array}{cc}
0 & 10 \\
-3 & 7 \\
-5 & 5
\end{array}\right]
$$

6. Calculating Kernel and Image

6.1. Finding Kernel and Image of a matrix.

Let $A \in \mathcal{M}_{m \times n}$ be a matrix. The kernel of A (or nullspace)

$$
\operatorname{Ker} A=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{0}\right\}
$$

is just the solution set to the system of homogeneous equations associated to the matrix A.
The Image (or range or column space) is

$$
\text { Image } A=\left\{A \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^{n}\right\}=\left\{\mathbf{y} \in \mathbb{R}^{m} \mid \exists \mathbf{x} \text { satisfying } \mathbf{y}=A \mathbf{x}\right\}
$$

and it is easy to show this equals the span of the columns of A.
To find a basis for the kernel and image of a matrix A :
(1) Using row reduction, put A in reduced row echelon form (RREF).
(2) Once A is in RREF, write down the set of solutions to the linear system. You will get a basis vector for each column with a free variable (however the basis vector is not the column vector!).
(3) Image A has a basis given by the columns of A which, after row reduction, contain a pivot.

You will always have $\operatorname{dim} \operatorname{Ker} A=$ the number of free variables, and $\operatorname{dim} \operatorname{Im}$ age $A=$ number of pivots.
6.2. Finding Kernel and Image of a general linear map between finite-dimensional vector spaces.

Ker $T=\{\mathbf{v} \in V \mid T(\mathbf{v})=\mathbf{0}\} \subseteq V, \quad$ Image $T=\{\mathbf{w} \in W \mid \mathbf{w}=T(\mathbf{v})$ for some $\mathbf{v} \in V\} \subseteq W$.
(1) If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map given by $T(\mathbf{x})=A \mathbf{x}$, then $\operatorname{Ker} T=\operatorname{Ker} A$, and Image $T=\operatorname{Image} A$. You are done.
(2) For a general linear map $T: V \rightarrow W$, choose bases B, C of V, W. Determine the matrix $T_{C B}$, which represents the linear map relative to the bases B and C.
(3) Find a basis for kernel/image of the matrix $T_{C B}$.
(4) For each vector in the basis of $\operatorname{Ker} T_{C B} \subset \mathbb{R}^{n}$, map it to V by L_{B}. Here, $L_{B}\left(r_{1}, \ldots, r_{n}\right)=r_{1} \mathbf{v}_{1}+\cdots r_{n} \mathbf{v}_{n}$ where $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$.
(5) For each vector in the basis of Image $T_{C B} \subset \mathbb{R}^{m}$, map it to W by L_{C}.
(6) Note that $\operatorname{dim} \operatorname{Ker} T=\operatorname{dim} \operatorname{Ker} T_{C B}=\#$ free variables, and $\operatorname{dim} \operatorname{Im}$ age $T=\operatorname{dim} \operatorname{Im}$ age $T_{C B}=\#$ pivots.

Remark 6.1. Equivalently, you can set up the equations

$$
T(\mathbf{v})=\mathbf{0}, \quad T(\mathbf{v})=\mathbf{w}
$$

and solve. Solutions \mathbf{v} to the first equation are elements of $\operatorname{Ker} T$. Vectors \mathbf{w}, such that there exists a solution to the second equation, are elements of Image T. In the process of solving, you will find yourself (maybe without realizing it) going through the process given above.

Theorem 6.2 (Rank-Nullity). If $T: V \rightarrow W$ is linear, and V is finite-dimensional, then

$$
\operatorname{dim} \operatorname{Ker} T+\operatorname{dim} \operatorname{Image} T=\operatorname{dim} V
$$

Corollary 6.3. If $T: V \rightarrow W$ is linear, and V is finite-dimensional, then

$$
\begin{aligned}
& \operatorname{dim} \operatorname{Ker} T \geq \operatorname{dim} V-\operatorname{dim} W, \\
& \operatorname{dim} \operatorname{Im} a g e \\
& \leq \operatorname{dim} V
\end{aligned}
$$

If T is one-to-one, then $\operatorname{dim} V \leq \operatorname{dim} W$.
If T is onto, then $\operatorname{dim} V \geq \operatorname{dim} W$.

