MATH 616 HOMEWORK
 DUE 3/26/18

(1) (p. 275: 2.12) Perform the Gram-Schmidt process on this basis for \mathbb{R}^{3} :

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{c}
2 \\
1 \\
-3
\end{array}\right],\left[\begin{array}{l}
3 \\
3 \\
3
\end{array}\right]\right\}
$$

(2) Let $V=\mathbb{R}^{2}$ with subspace W given by the line $x+2 y=0$.
(a) Find a basis for W.
(b) Which vectors are in the subspace

$$
W^{\perp}=\{v \in V \mid\langle v, w\rangle=0 \quad \forall w \in W\} ?
$$

(c) For $\mathbf{v}=(0,4)$, calculate the orthogonal projection $\operatorname{proj}_{W} \mathbf{v}$.
(d) Verify that $\mathbf{v}-\operatorname{proj}_{W} \mathbf{v} \in W^{\perp}$.
(3) Let $V=\mathbb{R}^{3}$, and let W be the plane spanned by the vectors $\{1,0,0\}$ and $\{0,1,1\}$. What vector in W is closest to $\{2,2,2\}$? What vector in W is closest to $\{-5,0,2\}$?
(4) Let $\langle f, g\rangle=\int_{0}^{2 \pi} f g d x$. Calculate $\langle\cos (k x), \sin (l x)\rangle$ and $\langle\cos (k x), \cos (l x)\rangle$, where k, l are positive integers.
(5) Let $f:[0,2 \pi] \rightarrow \mathbb{R}$ be the following piecewise function:

$$
f(x)= \begin{cases}1 & 0 \leq x \leq \pi \\ 0 & \pi<x \leq 2 \pi\end{cases}
$$

(a) Calculate the Fourier coefficients a_{0}, a_{n}, b_{n} for $f(x)$.
(b) Sketch a graph of $f(x)$ and the $5^{\text {th }}$ Fourier approximation

$$
S_{5}(x)=a_{0}+\sum_{n=1}^{5}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)
$$

[^0]
[^0]: Date: March 19, 2018.

