MATH 616 HOMEWORK DUE 3/26/18

(1) (p. 275: 2.12) Perform the Gram-Schmidt process on this basis for \mathbb{R}^3 :

ſ	$\begin{bmatrix} 1 \end{bmatrix}$		2		[3])
ł	2	,	1	,	3	2
l	3	,	-3	,	3	J
`						

- (2) Let $V = \mathbb{R}^2$ with subspace W given by the line x + 2y = 0. (a) Find a basis for W.
 - (b) Which vectors are in the subspace

 $W^{\perp} = \{ v \in V \, | \, \langle v, w \rangle = 0 \quad \forall w \in W \}?$

- (c) For $\mathbf{v} = (0, 4)$, calculate the orthogonal projection $\operatorname{proj}_W \mathbf{v}$.
- (d) Verify that $\mathbf{v} \operatorname{proj}_W \mathbf{v} \in W^{\perp}$.
- (3) Let $V = \mathbb{R}^3$, and let W be the plane spanned by the vectors $\{1, 0, 0\}$ and $\{0, 1, 1\}$. What vector in W is closest to $\{2, 2, 2\}$? What vector in W is closest to $\{-5, 0, 2\}$?
- (4) Let $\langle f,g \rangle = \int_0^{2\pi} f g \, dx$. Calculate $\langle \cos(kx), \sin(lx) \rangle$ and $\langle \cos(kx), \cos(lx) \rangle$, where k, l are positive integers.
- (5) Let $f: [0, 2\pi] \to \mathbb{R}$ be the following piecewise function:

$$f(x) = \begin{cases} 1 & 0 \le x \le \pi \\ 0 & \pi < x \le 2\pi \end{cases}$$

- (a) Calculate the Fourier coefficients a_0, a_n, b_n for f(x). (b) Sketch a graph of f(x) and the 5th Fourier approximation

$$S_5(x) = a_0 + \sum_{n=1}^{5} (a_n \cos(nx) + b_n \sin(nx)).$$

Date: March 19, 2018.