MATH 616 HOMEWORK DUE 4/2/18

- (1) Show that $(\operatorname{Image} A)^{\perp} \subseteq \operatorname{Ker}(A^T)$. (This completes the proof that $(\operatorname{Image} A)^{\perp} = \operatorname{Ker}(A^T)$)
- (2) Prove that if Ker A = 0, then Ker $(A^T A) = 0$. Use this to conclude that if Ker A = 0, then $(A^T A)^{-1}$ exists.
- (3) (a) Find the least squares solution of

$$x_1 + x_2 = 4$$

 $2x_1 + x_2 = -2$
 $x_1 - x_2 = 1.$

- (b) Use your answer to find the point on the plane spanned by (1,2,1) and (1,1,-1) that is closest to (4,-2,1).
- (4) Find the parabola $y = ax^2 + bx + c$ that best fits the four data points (-1,0), (0,1), (1,3), (2,5).
- (5) The goal of this problem is to understand why the method we've discussed is called the "least squares solution."

Use the same setup from problem (4) above.

- (a) Explicitly write the desired equation in the form $A\mathbf{x} = \mathbf{b}$, where $\mathbf{x} = (a, b, c)$, and $\mathbf{b} \in \mathbb{R}^4$.
- (b) Using the standard inner product on \mathbb{R}^4 (given by the dot product), calculate the distance (squared) between $A\mathbf{x}$ and \mathbf{b} for arbitrary $\mathbf{x} = (a, b, c)$. In other words, what is $|A\mathbf{x} \mathbf{b}|^2$?
- (c) Using 5b, explain why the solution to problem 4 is called the least squares solution.
- (6) A square matrix $A \in \mathcal{M}_{n \times n}$ is said to be *orthogonal* if the linear map it represents preserves lengths and angles. Explicitly, viewing $A : \mathbb{R}^n \to \mathbb{R}^n$, we say A is orthogonal if:

$$\langle A\mathbf{x_1}, A\mathbf{x_2} \rangle = \langle \mathbf{x_1}, \mathbf{x_2} \rangle$$
 for all $\mathbf{x_1}, \mathbf{x_2} \in \mathbb{R}^n$.

Prove: $A \in \mathcal{M}_{n \times n}$ is orthogonal if and only if $A^T A = A A^T = I$. (This latter property is often used as the the definition of an orthogonal matrix.)

Date: March 26, 2018.