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2 economy.

I: Exercises

- Examples (i) and (ii) are sometimes referred to as Leslie population models,
: while (iii) is referred to in economics as a Leontief model of a multisectored

1. There are two jars initially full of pure water. Jar A
is 0.5 liter and jar B is 0.25 liter. Water containing
salt at a concentration of 100 g/liter is pumped
into jar A at 0.5 liter/hr. Water flows from jar A to
jar B at 0.5 liter/hr. Water flows out of jar B and
down a drain at 0.5 liter/hr. Find the amounts of
salt in each jar as a function of time t. Graph your
solutions. (Figure 6.4.1 is applicable.)

. 2. There are two laboratory beakers. Beaker A con-
k tains 0.15 liter of pure water and beaker B contains
20 g of sait dissolved in 0.1 liter of water. Water
containing salt at a concentration of 100 g/liter
flows into beaker A at a rate of 0.3 liter/hr. Water
flows from beaker A to beaker B at 0.3 liter/hr.
Water flows from beaker B at 0.3 liter/hr and goes
down the drain. Find the amount of salt in each
beaker as a function of time, and graph your
solution.
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3. Water containing salt at a concentration of 1 Ib/gal
. flows into a 2-galion tank at 0.2 gal/min. Water
. flows out of the first tank and into a second
: 3-gallon tank at 0.2 gal/min. Both tanks are initially
§ full of pure water. Pure water from a tap flows
directly into the second tank at 0.1 gal/min. Water
is piped out of the second tank and down a drain
at 0.3 gal/min. Find the amount of salt in each
tank as a function of time and graph your solution.

gi“. A tank initially contains 2 liters of water and 5 g
. of salt. Water containing salt at a concentration

of 5 g/liter flows into this tank at 2 liters/hr.

. Water flows from this tank into a second tank at
.2 liters/hr. The second tank contains one liter

s of fluid and initially contains 10 g of salt. Water

; “"g,-EVaporates from the second tank at 1 liter/hr and
=flows from the second tank and down a drain at

. There are two tanks. Tank A is a 100-gallon tank

. There are two 100-gallon tanks full of water. Tank

. Two 2-liter jars are initially full of pure water.

. There are two tanks. Tank A contains 100 gallons

1 liter/hr. Find the amount of salt in each tank as
a function of time, and graph the solutions.

initially full of water containing salt at a concen-
tration of 0.5 Ib/gal. Tank B is a 200-gallon tank,
initially full of water containing salt at a concen-
tration of 0.1 1b/gal. Starting at time ¢ = 0, water is
pumped from tank A to tank B at 2 gal/min and
from tank B to tank A at 2 gal/min. Find the
amount of salt in each tank as a function of time,
and graph the solutions.

A contains salt at a concentration of 0.4 1b/gal,
while tank B contains pure water. Pure water flows
into tank A from an outside source at 2 gal/min.
Water is pumped from tank A to tank B at 3
gal/min. Water evaporates from tank B at a rate
of 2 gal/min. Water is also pumped from tank B to
tank A at 1 gal/min. Find the amount of salt in
each tank as a function of time, and graph your
solution.

Water containing salt at a concentration of 10
g/liter is pumped into jar A at a rate of 2 liters/hr
and into jar B at a rate of 2 liters/hr. Water is
piped from jar A to jar B at 3 liters/hr and from
jar B to jar A at 1 liter/hr. In addition, water flows
from jar B down the drain at 4 liters/hr. Find the
amount of salt in the jars as a function of time,
and graph the solutions.

of pure water while tank B contains 10 1b of salt
dissolved in 200 gallons of water. Pure water enters
tank A at 5 gal/min. Water is pumped from tank A
to tank B at 8 gal/min and from tank B to tank A
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12.

at 3 gal/min. In addition, 5 gal/min of water is
pumped out of tank B and sent out of the system.
Find the amount of salt in each tank as a function
of time, and graph the amounts.

. Two large tanks initially each contain 100 gal of

pure water. Water containing salt at a concentra-
tion of 0.5 Ib/gal is pumped into tank A at 14
gal/min. Water is pumped {rom tank A to tank B
at 9 gal/min. Water is pumped from tank B and
sent down a drain at 6 gal/min. Find a differential
equation for the amount of salt in each tank that
is valid as long as the tanks are not full. You do
not need to solve the differential equation. (Note:
The volumes are not constant.)

Each of two large tanks in the desert initially con-
tains 500 gallons of water with a salt concentration
of 0.01 Ib/gal. Water containing salt at a concen-
tration of 0.2 Ib/gal is pumped into tank A at a
rate of 10 gal/hr. Water evaporates from tank A at
a rate of 7 gal/hr and is pumped from tank A into
tank B at 5 gal/hr. Water evaporates from tank B
at a rate of 8 gal/hr. Water is also pumped out of
tank B at 3 gal/hr. Write the differential equation
for the amount of salt in each tank, which is valid
until one of the tanks goes dry. You do not need
to solve the differential equation.

. There are three tanks each initially containing 100

gallons of pure water. Water containing salt at a
concentration of 2 Ib/gal flows into tank A ata
rate of 5 gal/min. Water is pumped from tank A to
tank B at 2 gal/min and from tank A to tank C at
3 gal/min. Water is pumped from tank C to tank B
at 3 gal/min. Water is dumped out of tank B and
then down a drain at a rate of 5 gal/min. Derive
the differential equation for the amount of salt

in each tank as a function of time. You need not
actually solve the differential equation.

Three shallow ponds are out in the sun. Each is
initially full of 5000 gallons of pure water. Water
containing salt at a concentration of 0.2 1b/gal
flows into pond A at a rate of 10 gal/hr. Water
evaporates from pond A at 2 gal/hr. Water flows
from pond A to pond B at 8 gal/hr. Water evap-
orates from pond B at 3 gal/hr. Water flows from
pond B to pond C at 5 gal/hr. In pond C, water
evaporates at 4 gal/hr and flows out at 1 gal/hr.
Derive the differential equation for the amount of

salt in each pond. You do not need to solve the
differential equation.

13. Two tanks contain V, and V, gallons of water, re-
spectively. Water containing salt at a concentration
of 4 Ib/gal flows into the first tank at « gal/min,
while f gal/min (0 < f < ) of water is pumped
from the first tank into the second. Finally, y
gal/min of water is pumped out of the second tank
(0 <y < B). Assume that evaporation rates for the
tanks are such that V,, ¥, are constant.

i) Set up the differential equation for the amount
of salt in each tank.
ii) Using elimination, find a differential equation
for the amount of salt in the second tank.
iii) Find the roots of the characteristic equation
from part (ii).
iv) Determine for what values of the parameters

there will be equilibrium solutions and deter-
mine the equilibrium solution if there is one.

(Population Models) Exercises 14 through 19 deal with

the following situation. A species is divided into m
groups which we take to be age groups. Suppose that
w is the size of a group at time ¢. For that group we
assume

i) There is a loss due to death which is propor-
tional to group size, —ow, with 6 > 0. (This
could also represent harvesting for species
such as trees.)

ii) Individuals “graduate” from one group to the

next at a rate proportional to group size,
—gw, with g > 0. ) )
iii) Fertile groups give rise to offspring at a rate
proportional to group size, fw, with § > 0.
14. Suppose that a population consists of two group:
adults and children. Let x be the number of chil-
dren and y the number of adults. Assume that
children cannot have offspring. Explain why the
model
dx b

= OBy, xlo)=Xo2 0°

dy
—= =4,y X,
a 2y + gx,

with é,, 3,, g, f positive constants might be.
reasonable given assumptions (i) through (i)

ytg) =yo 20
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Exercises 15 through 17 illustrate the types of behavior
\ possible for (20).

15.

Suppose that (20) holds and §, =g = 1,6, = 2, and

B = 1. Show that lim,_, o x(t) = 0, lim,_,, y(t) = 0,

so that the species dies out.

Suppose that 20) holdsand 8, =g =1,8, = 2,

and f =4.

a) Show that (20) has nonzero equilibrium
solutions (X, ¥).

b) Show that every solution x(z), y(t) converges to
one of these equilibrium solutions.

Suppose that (20) holds and , = g = 1,8, =2,

and f = 9. Show that for initial conditions x(0) > 0,

y(0) > 0 we have lim,,,, x(¢) = o0, lim,_,, y(t) = cC,

. x(t) . . .
and lim,_, :T; exists and is finite.
y

Suppose that (20) holds. Show that

a) If5,(0, + g) — fg > 0, then lim, ., x(1) =
lim, o y(t) = 0.

b) If6,(6, + g) — Bg = O, then there are nonzero
equilibriums and every solution of (20) con-
verges to one of these equilibriums as t — co.

c) Ifd,(8, + g) — Bg <0, then lim,_ , x(t) =
lim, ., y(¢) = oo for initial conditions x(0) > 0,
y(0) > 0.

d) Give a biological interpretation of parts (a)
through (c) in terms of the effect of the birth
rate constant j.

19. Suppose that the population consists of three stages

20.

(=~

which we shall call larva (x), pupa (y), and adult
(2). Only adults can produce larva.

a) Explain why a reasonable model might be
X'=—(6, +g)x+f2
y'= =+ g)y+4g,x
z'= =83z + g,y

with all constants positive and the initial
conditions nonnegative.

@1

b) Discuss what other assumptions would prob-
ably need to be made for (21) to be an accurate
model.

(Interest) Two investment accounts are set up with
$1000 initially in account A and $2000 initially in
account B. Account A, the long-term account,
earns 109, a year compounded daily. Account B
earns 5%, a year compounded daily. Deposits are
made into B at the rate of $10 a day. Every day the
bank transfers money from B to A at an (annual)’
rate of 20%; of the difference between B and $2000.
Set up the differential equations that model this
situation. (Interest is first discussed in Exercise
29.15)
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Mechanical Systems

In this section we will discuss how some mechanical systems can be modeled

by linear systems of differential equations. This is a continuation of Sections
2.13,3.3,and 3.16. In order to avoid nonlinear problems, we shall consider point
masses, connected by springs in a linear array, undergoing small oscillations.
Larger three-dimensional arrays can be used to model many physical structures

and mechanical devices. We consider two configurations.

A Horizontal Array of Springs and Masses

Suppose we have two point masses of mass m, , m, and three springs of lengths
L., L,, Ly and spring constants k,, k,, ky. The springs and masses are arranged

as in Fig. 6.5.1.

The left end of spring 1 and the right end of spring 3 are attached to
immovable surfaces. The masses are in contact with a surface whose coefficient




