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The nonrelativistic, valence-shell-only-correlated ab initio potential energy curve of the F2

molecule, which was reported in the preceding paper, is complemented by determining the energy
contributions that arise from the electron correlations that involve the core electrons as well as the
contributions that are due to spin-orbit coupling and scalar relativistic effects. The dissociation curve
rises rather steeply toward the energy of the dissociated atoms because, at larger distances, the
atomic quadrupole-quadrupole repulsion and spin-orbit coupling counteract the attractive
contributions from incipient covalent binding and correlation forces including dispersion. © 2007
American Institute of Physics. �DOI: 10.1063/1.2801989�

I. INTRODUCTION

The basic aim of the present series of investigations is
the ab initio determination of molecular energies along reac-
tion paths. Experimental information regarding energies
along entire reaction paths is most complete in the case of
diatomic molecules because, for many of them, full vibra-
tional spectra have been measured with an error of less than
a cm−1. It has proven difficult to obtain corresponding poten-
tial energy curves accurately and fully by ab initio quantum
mechanics. No such curve has as yet been reported for any
18-electron system such as the fluorine molecule, which is
the object of the present study.

In the preceding paper,1 we have established the nonrel-
ativistic potential energy curve taking into account electron
correlations only in the valence shell. In order to be able to
make contact with physical reality at the level of accuracy of
that calculation, i.e., a few tenths of a millihartree, one must
also include electron correlations involving core electrons
and the effects of relativity �see, e.g. Ref. 2�. The latter can
be obtained as the sum of the spin-orbit coupling energies3–6

and the scalar mass-velocity-plus-Darwin �MVD�
energies.7–12 Since all of these contributions represent small
correction terms, they can be calculated with less compli-
cated wavefunctions. They are determined and added in the
present paper. The dependence of the resulting full potential
energies on the internuclear distance is analyzed and inter-
preted. The resulting energies will be used in the subsequent
paper to determine the rotation vibration spectrum.

II. AB INITIO ENERGIES ALONG THE DISSOCIATION
CURVE

A. Correlation energy contributions involving core
orbitals

The electron correlations involving core orbitals lower
the total energy by about 120 mhartree, which is about 20%
of the valence correlation energy at the equilibrium geom-
etry. However, this core contribution changes only by frac-
tions of a millihartree along the dissociation path, whereas
the valence correlation energy �relative to the self-consistent-
field �SCF� energy� changes by about 200 mhartree. For this
reason, the energy changes along the reaction paths that are
contributed by correlations involving the core can be calcu-
lated by simpler formalisms than those used for the correla-
tions in the valence space in the preceding paper.1 The
method must, however, be based on a multiconfigurational
reference function capable of properly representing the dis-
sociation without a deterioration of the performance at
stretched geometries. We have chosen the second-order mul-
tireference configuration interaction singles and doubles
�MRCISD� approach, also called second-order CI, whose
suitability for this purpose has been established by a thor-
ough investigation of Peterson et al.13 We have included
the multireference analog of the Davidson correction
�MRCISD+Q method�, whose usefulness is well
established.14

On the other hand, more extensive orbital basis sets are
required when core as well as valence correlation energies
are to be recovered reliably, as was also documented by
Peterson et al.13 To this end, Dunning and co-worker devel-
oped the cc-pCVXZ basis sets, systematic correlation-
consistent basis sets for the simultaneous description of alla�Electronic mail: ruedenberg@iastate.edu
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correlations, valence, and core.15,16 We have chosen the
quadruple-zeta cc-pCVQZ basis set for all calculations de-
scribed in this section.

Using this approach, we have calculated the energies
along the dissociation path when all electrons are correlated
as well as the energies when only the valence electrons are
correlated. The differences between these two energies yield
the correlation contributions that are generated by the core
electrons. All calculations were performed with the GAMESS

suite of quantum chemical17 programs.
The first step in the application of the MRCI method was

the determination of the full optimized reaction space18

�FORS� molecular orbitals

1�g1�u2�g2�u3�g3�u1�xu1�yu1�xg1�yg �1�

for the construction of the reference functions along the dis-
sociation path. Here and in the following, we use the nomen-
clature of Ref. 18: complete active space SCF �CASSCF� as
a generic term; FORS=CASSCF generated by a full space of
valence orbitals.

When the FORS�14/8� function was MCSCF optimized
to this end, the 2�g, 2�u orbitals turned out to be doubly
occupied for large R and, as a result, mixed with the 1�g,
1�u orbitals. Such mixing interferes with the correct subse-
quent construction of excited configurations for the valence-
only MRCI calculations and leads to spurious correlation en-
ergy fluctuations, as has also been observed by others.19,20

The problem was solved by optimizing all orbitals using a
reduced FORS�10/6� wavefunction involving the six active
orbitals, 3�g, 3�u, 1�xu, 1�yu, 1�xg, and 1�yg, and the four
inactive orbitals, 1�g, 1�u, 2�g, and 2�u, followed by a final
Fock-matrix diagonalization among the inactive orbitals. The
resulting molecular orbitals �MOs� of the list �1�, expressed
in terms of the cc-pCVQZ basis set, were then used for both
the valence-only and the all-electron MRCI calculations.

In order to be consistent with the calculations in the
preceding paper,1 the reference functions for the valence-
only MRCISD calculations were the CI wavefunctions in the
full FORS�14/8� configuration space generated by the 14 va-
lence electrons using the 8 valence orbitals, 2�g, 2�u, 3�g,
3�u, 1�xu, 1�yu, 1�xg, and 1�yg, as active orbitals, while
keeping both 1� orbitals doubly occupied. Single and double
excitations were then generated by moving electrons from
the eight valence orbitals into virtual orbitals.

Analogously, the reference functions for the all-electron
MRCISD calculations were the CI wavefunctions in the full
configuration space generated by all 18 electrons using all 10
MOs of the list �1� as active orbitals. Single and double
excitations were then generated by moving electrons from all
ten reference orbitals into virtual orbitals.

The results of the MRCISD and the MRCISD+Q calcu-
lations are listed in Table I for 18 points along the dissocia-
tion paths including the 13 points, at which the accurate va-
lence correlation energies were calculated in the preceding
paper.1 As mentioned above, the core-generated correlation
contributions are about 120 mhartree, but change by less
than 1 mhartree. The probable superiority of the MRCISD
+Q over the MRCISD approach is confirmed by the obser-
vation that the energy difference between R=8 Å and R

=1.411 93 Å �the equilibrium distance� for the MRCISD
+Q calculations involving valence electron correlations
�third column� is 61.43 mhartree, which is much closer to the
nonrelativistic valence-correlated value of 62.56 mhartree
derived from experiment �see Sec. VII B of Ref. 1 and Refs.
21 and 22� than the corresponding difference of
56.57 mhartree for the MRCISD calculations. This was al-
ready noted by Peterson et al.13 One also notes that the core-
correlation contribution to the binding energy �fourth col-
umn� resulting from the MRCISD+Q calculation
�0.31 mhartree� is closer to the value of 0.16 mhartree re-
ported by Peterson et al.13 and by Boese et al.23 than the
contribution resulting from the MRCISD calculation
�0.67 mhartree�.

TABLE I. Determination of core-generated correlation energy contributions
by means of MRCISD and MRCISD+Q calculations using cc-pCVQZ basis
sets �energies in millihatrees�.

R
�Å�

Total energies
Correlations

generated
by core el’s

All electrons
correlated

Valence el’s
only correlated

MRCI-SD
1.140 00 −199 364.416 −199 247.954 −116.462
1.200 00 −199 402.281 −199 286.217 −116.063
1.300 00 −199 434.216 −199 318.631 −115.585
1.360 00 −199 441.409 −199 326.011 −115.398
1.411 93 −199 443.097 −199 327.808 −115.288
1.500 00 −199 439.966 −199 324.770 −115.196
1.600 00 −199 431.755 −199 316.553 −115.201
1.700 00 −199 422.173 −199 306.891 −115.281
1.800 00 −199 413.236 −199 297.839 −115.397
2.000 00 −199 400.103 −199 284.475 −115.629
2.200 00 −199 392.979 −199 277.194 −115.785
2.400 00 −199 389.607 −199 273.738 −115.869
2.600 00 −199 388.121 −199 272.210 −115.911
2.800 00 −199 387.488 −199 271.555 −115.933
3.000 00 −199 387.230 −199 271.285 −115.945
3.200 00 −199 387.136 −199 271.184 −115.952
3.400 00 −199 387.110 −199 271.154 −115.956
8.000 00 −199 387.194 −199 271.233 −115.961

MRCI-SD+Q
1.140 00 −199 404.846 −199 281.555 −123.291
1.200 00 −199 443.402 −199 320.463 −122.938
1.300 00 −199 476.143 −199 353.636 −122.506
1.360 00 −199 483.581 −199 361.252 −122.329
1.411 93 −199 485.336 −199 363.119 −122.217
1.500 00 −199 482.043 −199 359.939 −122.104
1.600 00 −199 473.316 −199 351.249 −122.067
1.700 00 −199 463.016 −199 340.920 −122.096
1.800 00 −199 453.306 −199 331.146 −122.160
2.000 00 −199 438.851 −199 316.545 −122.305
2.200 00 −199 430.906 −199 308.497 −122.409
2.400 00 −199 427.106 −199 304.642 −122.464
2.600 00 −199 425.407 −199 302.918 −122.489
2.800 00 −199 424.662 −199 302.160 −122.502
3.000 00 −199 424.339 −199 301.828 −122.511
3.200 00 −199 424.207 −199 301.689 −122.519
3.400 00 −199 424.161 −199 301.637 −122.524
8.000 00 −199 424.214 −199 301.683 −122.531
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The MRCISD+Q values for the core-correlation contri-
butions are also entered in the second column of Table II.

B. Scalar relativistic energy contributions

For the calculations of the relativistic scalar MVD en-
ergy corrections,6–11 we chose the one-electron Douglas-
Kroll �DK� approach6,7 including the transformation to third
order �DK3�. The code in GAMESS,17 which we have used,
goes back to Nakajima and Hirao24 and Nakajima et al.25 and
was further modified by Fedorov et al.26

Earlier studies21 of diatomic binding energies had indi-
cated that CASSCF calculations using cc-pVQZ bases yield
satisfactory scalar relativistic contributions. To assess the re-
liability of this choice, we made DK3 calculations with a

number of wavefunctions at selected points along the disso-
ciation curve. We considered RHF-SCF, FORS�10/6�, MR-
CISD, and MRCISD+Q wavefunctions, the latter with a
FORS�14/8� as well as a FORS�18/10� reference function.
The FORS orbitals determined in the previous section were
used in all of these calculations, except for the RHF-SCF
case. The results are given in Table III, where the various
rows contain the results for various wavefunctions. The con-
tributions to the potential energy curve, i.e., the values
�E�R�−E�2F��, are listed in columns 3–7 for five distances.
The last column lists the total scalar relativistic contribution
to the separated atoms. It is apparent that all correlated wave-
functions, including the coupled cluster result from the
literature,12 yield very similar results for the differences from
the separated atoms, even though the total values for the
latter differ by millihartrees. By contrast, the SCF/RHF val-
ues for the differences deviate markedly from the correlated
values. This observation agrees with other studies27 on simi-
lar systems.

We therefore chose FORS�10/6� wavefunctions based on
the FORS orbitals of the preceding section in terms of cc-
pVQZ basis sets to calculate the scalar relativistic corrections
at the 18 points that we had considered along the dissociation
curve in the preceding subsection. They are listed in the third
column of Table II.

As was the case for the core-generated correlations, the
scalar relativistic corrections have magnitudes of a few hun-
dreds of millihartrees, but change by less than a millihartree
along the dissociation path. The changes are, however, non-
negligible in the present context. These results are again con-
sistent with previous observations.21,22

C. Spin-orbit coupling contributions

Ab initio methodologies for calculating the spin-orbit
�SO� coupling contributions to molecular energies have been
described in a number of reviews.4–6 Most rigorous are four-
component methods based on the Dirac equation. The chal-
lenges of this approach are avoided by two-component meth-

TABLE II. Corrections to the nonrelativistic valence-only-correlated poten-
tial energies of F2. For core correlations, cc-pCVQZ bases are used; for
relativistic corrections, cc-pVQZ bases are used. Energies in millihartrees.

R
�Å�

Core
correlation

Scalar
relativistic

Spin
orbit

Total
correlation

1.140 00 −123.291 −171.747 −0.002 −295.040
1.200 00 −122.938 −171.803 −0.003 −294.744
1.300 00 −122.506 −171.894 −0.004 −294.405
1.360 00 −122.329 −171.939 −0.005 −294.273
1.411 93 −122.217 −171.969 −0.006 −294.192
1.500 00 −122.104 −172.005 −0.009 −294.118
1.600 00 −122.067 −172.027 −0.013 −294.107
1.800 00 −122.160 −172.039 −0.028 −294.227
2.000 00 −122.305 −172.033 −0.063 −294.401
2.200 00 −122.409 −172.027 −0.145 −294.581
2.400 00 −122.464 −172.023 −0.330 −294.817
2.600 00 −122.489 −172.021 −0.652 −295.162
2.800 00 −122.502 −172.019 −0.969 −295.490
3.000 00 −122.511 −172.019 −1.139 −295.669
3.200 00 −122.519 −172.019 −1.194 −295.731
3.400 00 −122.524 −172.019 −1.204 −295.747
8.000 00 −122.531 −172.020 −1.206 −295.757

10.000 00 −122.531 −172.020 −1.206 −295.757

TABLE III. Scalar relativistic energy �mass-velocity-Darwin� contributions calculated with various wavefunc-
tions. Energies in millihartrees.

Method Basis set EMVD�R�−EMVD���a EMVD

R�Å�→ 1.14 1.3 1.41193 1.6 1.8 �a

No electrons correlated
SCF cc-pVQZ 0.332 0.221 0.157 0.085 0.036 −173.787

Valence electrons correlated
MRCIb cc-pCVTZ 0.058 −171.708
MRCIb cc-pVQZ 0.243 0.114 0.052 0.004 −0.010 −172.584
FORS�10/6� cc-pVQZ 0.273 0.125 0.051 −0.007 −0.019 −172.020

All electrons correlated
MRCIc cc-pCVTZ 0.052 −174.301
CCSD�T�d cc-pCVQZ 0.05 −175.00

aThe symbol � means 20 Å in all rows except the last one, where it implies twice the single atom value.
bBased on the FORS�14/8� reference function.
cBased on the FORS�18/10� reference function.
dObtained as the sum of the separately calculated mass-velocity correction and Darwin correction by Helgaker,
et al. in Ref. 12, page 852.

204301-3 Potential curve of F2 J. Chem. Phys. 127, 204301 �2007�

Downloaded 29 Nov 2007 to 67.83.172.31. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



ods that are derived by separating the large from the small
components. The most common approach3,4,28 uses the Breit-
Pauli spin-orbit operator which results from the Foldy-
Wouthuysen transformation29 of the Dirac-Breit equation
truncated to second order in the fine-structure constant. The
program in GAMESS �Ref. 17� uses the full one- and two-
electron Breit-Pauli operators. It has been developed by Fe-
dorov and Gordon4 and Fedorov et al.6

Fluorine being a light atom, spin-orbit coupling essen-
tially mixes the components of the states resulting from the
Russell-Saunders coupling. Thus, its �1s22s22p5− 2P� ground
state splits into the 2P1/2 level and the 2P3/2 level with the
energy values

E�2P3/2� = E�2P� − 1
3ESOS, E�2P1/2� = E�2P� + 2

3ESOS,

�2a�

where

ESOS = �E�2P3/2� − E�2P1/2�� = 404 cm−1 �2b�

is the observed SO splitting.28,30 At large interatomic dis-
tances, the F2 energies will therefore converge toward three
limiting values, which are evenly spaced by 404 cm−1, viz.,

E�3/2,3/2� = E�2P3/2� + E�2P3/2� = 2E�2P� − 2
3ESOS = E1,

�3a�

E�3/2,1/2� = E�2P3/2� + E�2P1/2� = 2E�2P� + 1
3ESOS = E2,

�3b�

E�1/2,1/2� = E�2P1/2� + E�2P1/2� = 2E�2P� + 4
3ESOS = E3.

�3c�

The corresponding molecular states are characterized as
products of the atomic states, but only MJ=ML+MS remains
a good quantum number �the z axis being the internuclear
axis�. It can manifestly vary from −3 to 3. The numbers of
configuration state functions �CSFs� with the various MJ val-
ues for the three asymptotic limits are readily deduced to be

MJ→ − 3 − 2 − 1 0 1 2 3 Total

�3/2,3/2� 1 2 3 4 3 2 1 16

�3/2,1/2� − 2 4 4 4 2 − 16

�1/2,1/2� − − 1 2 1 − − 4

Total 1 4 8 10 8 4 1 36

�4�

The zeroth-order wavefunctions of the atomic 2P states
are superpositions of six determinants that differ only in the
occupations of the p orbitals. If we keep the 1s and 2s orbit-
als on both atoms also doubly occupied in the F2 molecule,
and generate the full FORS�10/6� configuration space by
placing the ten remaining electrons in the six p orbitals of the
two atoms Fa, Fb, then we obtain 66 determinants. This
FORS can be spanned by 30 ionic CSFs and 36 covalent
CSFs. The ionic configurations can be characterized as origi-
nating from the six atomic state products

1S�Fa
−� � 1S�Fb

+� ± 1S�Fa
+� � 1S�Fb

−� → 1�g
+, 1�u

−,

�5a�

1S�Fa
−� � 1D�Fb

+� ± 1D�Fa
+� � 1S�Fb

−�

→ 1�g
+, 1�u

−, 1�g, 1�u, 1�g, 1�u, �5b�

1S�Fa
−� � 3P�Fb

+� ± 3P�Fb
+� � 1S�Fa

−�

→ 3�g
+, 3�u

−, 3�g, 3�u. �5c�

Thus, the ionic subspace contains 8 singlet states with a total
of 12 CSFs and 4 triplet states with a total of 18 CSFs. The
covalent configurations, on the other hand, can be character-
ized as originating from the products of the orbital holes
2p�, 2p�x, 2p�y on the two F atoms as follows:

��Fa� � ��Fb� ± ��Fb� � ��Fa� → 1�g
+, 3�u

+, �6a�

��Fa� � ��Fb� ± ��Fb� � ��Fa� → 1�g, 3�g, 1�u, 3�u,

�6b�

��Fa� � ��Fb� ± ��Fb� � ��Fa�

→ 1�g
+, 3�u

+, 1�u
−, 3�g

−, 1�g, 3�u. �6c�

Thus, the covalent subspace contains 6 singlet states with a
total of 9 CSFs and 6 triplet states with a total of 27
CSFs.31–33

At the separate-atom limit, the ionic states converge to
an energy that is 515 mhartree higher than that of the cova-
lent limit, since the ionization potential and the electron af-
finity of F are 640 and 125 mhartree, respectively.34

No spin-orbit coupling exists in the molecular 1�g
+

ground state at the equilibrium distance; the spin-orbit inter-
actions set in only at large internuclear distances and they are
expected to occur predominantly in the nearly separated at-
oms. Hence, the spin-orbit interaction matrix between all 12
covalent states listed in Eqs. �6a�–�6c� should be taken into
account. However, the 12 ionic states of Eqs. �5a�–�5c�, lying
about half a hartree higher at the separate-atom limit, are not
expected to be significantly involved in these interactions.
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Quantitative calculations indeed confirm that the energy low-
ering of the ground state due to spin-orbit coupling obtained
with all 66 FORS configurations is identical with that ob-
tained using only the low-lying 36 configurations.

Fedorov et al.6 have found that full valence space �i.e.,
FORS-type� wavefunctions as well as MRCISD wavefunc-
tions gave equally good agreement with experimental values
in molecules of light elements, and they infer that dynamic
correlation has a relatively small effect on SO coupling in
these systems. We confirmed their observations by perform-
ing SO coupling calculations for F2 at selected geometries
with cc-pVTZ basis sets. Use of FORS�10/6� wavefunctions
and MRCISD wavefunctions yielded indeed near-identical
results, the difference being, e.g., 0.01 mhartree at 2.2 Å and
0.005 mhartree at 2.6 Å as well as 3 Å. As another test, we
calculated the SO coupling in F2 at an internuclear distance
of 8 Å, using the FORS�10/6� wavefunction and the
quadruple-zeta cc-pVQZ bases. We obtained, in fact, the
asymptotic results predicted by Eqs. �3a�–�3c� and �4�: The
energies of the CSFs converge to three limits, those converg-
ing to the same limit differing from each other by less than
1 cm−1 and the three limits differing from the pre-SO-
coupling energy 2E�2P� by

E1 − 2E�2P� = − 2
3E�SOS,

E2 − 2E�2P� = 1
3E�SOS, �7�

E3 − 2E�2P� = 4
3E�SOS,

with E�SOS=396 cm−1, which deviates only by 8 cm−1 from
the experimental value of Eq. �2b�. The number of converg-
ing CSFs and their MJ values also agree with Eq. �4�.

We chose the FORS�10/6� wavefunction with Dunning’s
cc-pVQZ basis for the calculation of the spin-orbit coupling
corrections along the entire dissociation curve of F2. More-
over, for simplicity we used only the 36-dimensional cova-
lent subspace of the full 66-dimensional FORS�10/6� space
since, as discussed above, the inclusion of ionic states has no
effect on the magnitude of the spin-orbit coupling.

The first step was the determination of appropriate orbit-
als. They were obtained by optimizing a fully state-averaged
MCSCF wavefunction involving all 18 CSFs with MS=0 in
the 36-dimensional covalent space of Eqs. �6a�–�6c�. This
state averaging yields equivalent orbitals, which are essential
for obtaining good spin-orbit corrections, just as three
equivalent p orbitals are required to obtain correct SO cou-
pling corrections in the F atom.

With these orbitals, the wavefunctions of the 36 CSFs of
the covalent FORS states of Eqs. �6a�–�6c� were then deter-
mined by a CI calculation and, subsequently, the Breit-Pauli
spin-orbital coupling matrix among these 36 CSFs was di-
agonalized. The difference between the ground state energies
with and without spin-orbit coupling furnished then the spin-
orbital coupling correction to the electronic energy. The val-
ues of these energy lowerings due to SO coupling at the 18
points listed in Table II are entered in the fourth column of
that table.

The fifth column of Table II gives the total energy cor-
rection, i.e., the sum of the core-generated correlations, the

scalar relativistic contributions, and the spin-orbit coupling
energies, which are listed in the preceding three columns.

The variation of the effect of spin-orbit coupling along
the entire dissociation curve is illustrated in Fig. 1. The top
panel displays plots of the FORS�10/6� calculations using
cc-pVQZ bases with and without SO coupling. The middle
panel displays a plot of the difference between the two plots
of the top panel, i.e., the SO coupling correction. On the
lower panel, the upper curve displays the complete basis set
�CBS� limit of the full CI energy including core correlations
and the lower curve represents the final result when the SO
correction of the middle panel is added to the upper curve of
the lower panel.

It should be noted that the gradual disappearance of the
spin-orbit coupling when the two F atoms approach each
other results in a repulsive force opposing the attractive
bonding interactions between the atoms.

FIG. 1. Spin-orbit �SO� coupling in F2 as function of the internuclear dis-
tance �the equilibrium distance is at 1.411 93 Å�. Upper panel: FORS�10/6�
calculations to determine the SO correction. Middle panel: The SO correc-
tion function=difference between the curves of the upper panel. Lower
panel: Application of the SO correction of the middle panel to the fully
correlated and CBS extrapolated energy curve.
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III. AB INITIO POTENTIAL ENERGY SURFACE

A. Ab initio dissociation curve

It is seen from Table II that core correlations and scalar
relativistic effects add up to corrections of about
300 mhartree, when using quadruple-zeta basis sets. Ex-
trapolation to the full basis set limit would change these
values by amounts in excess of a few millihartrees. However,
the comparison with experiment to be made in the subse-
quent paper involves only the dissociation curve, i.e., the
differences �E�R�−E����. As was already noted in Secs. II A
and II B, these differences change only by fractions of a
millihartree along the dissociation curve, so that the com-
plete basis set extrapolation does not have to be applied to
them.

Table IV collects all our quantitative ab initio results that
pertain to the dissociation curve �E�R�−E���8 Å��. The
second column lists the nonrelativistic valence-only-
correlated energies that are deduced from Table X of the
preceding paper1 by the method of the correlation energy
extrapolation by intrinsic scaling �CEEIS�. The third, fourth,
and fifth columns list the core-generated correlations, the
scalar relativistic effects, and the spin-orbit coupling, respec-
tively, which are deduced from Table II above. The sixth
column lists the sum of these corrections. The final column
lists the sum of the second and the sixth columns, i.e., the
ab initio potential energy curve of the fluorine molecule.

In the preceding paper we had, however, noted that, due
to small uncertainties in the CEEIS extrapolations, small
variations are possible in the valence correlation energies
�mostly less than 0.1 mhartree, a few between 0.1 and
0.2 mhartree�, and we had considered the corresponding
small variations that result in the values in the last column of
Table X of the preceding paper. We therefore consider them
also for the ab initio potential curve in the last column of the
present Table IV. The pertinent deviations were listed in
Table XI of the preceding paper.1 Thus, we shall also con-

sider the four additional potential energy curves that are ob-
tained by applying these additive deviations to the potential
energy values listed in the last column of Table IV. We shall
denote the corresponding five variants of our potential en-
ergy curve as EXTR1c, EXTR2c, EXTR3c, EXTR4c, and
EXTR5c, where we have taken the labels from Table XI of
the preceding paper1 and added the letter “c” to indicate the
addition of the correction terms listed in the sixth column of
the present Table IV.

As a first test of the quality of the ab initio potential
energy curve given in the last column of Table IV, we com-
pare it with the potential energy curve derived by Colbourn
et al.35 from the experimental spectroscopic data using the
RKR procedure36–38 �see also Refs. 39–42�. In Fig. 2, the 47
values of the RKR curve35 are shown as solid dots, while the

TABLE IV. The ab initio potential energy curve of F2. Listed in all columns are the values of �E�R�
−E�8 Å�� �The energy at R=8 Å represents the �F+F� dissociation limit.� Energies are in millihartrees.

R
�Å�

No Relat.,
no core
correl.a

Core
correlationb

Scalar
Relativisticb

Spin
orbit

coupl.b
Total

corrections

Ab initio
PES
curve

1.140 00 18.060 −0.760 0.273 1.204 0.717 18.777
1.200 00 −20.360 −0.408 0.217 1.203 1.012 −19.348
1.300 00 −53.230 0.024 0.125 1.202 1.352 −51.878
1.360 00 −60.620 0.202 0.081 1.201 1.484 −59.136
1.411 93 −62.350 0.314 0.051 1.200 1.564 −60.786
1.500 00 −59.270 0.427 0.015 1.198 1.639 −57.631
1.600 00 −50.710 0.463 −0.007 1.194 1.650 −49.060
1.800 00 −30.300 0.371 −0.019 1.179 1.530 −28.770
2.000 00 −15.590 0.225 −0.013 1.144 1.356 −14.234
2.200 00 −7.390 0.122 −0.007 1.061 1.176 −6.214
2.400 00 −3.530 0.066 −0.003 0.877 0.940 −2.590
2.800 00 −0.640 0.029 0.000 0.237 0.267 −0.373
8.000 00 0.000 0.000 0.000 0.000 0.000 0.000

aComplete basis set limit of nonrelativistic values with only valence electrons being correlated. Derived from
Table X of the preceding paper �Ref. 1�.
bDerived from Table II of the present paper.

FIG. 2. Potential energy curve of F2. Filled circles �47 values�: RKR values
of Ref. 35. Large open-circles �12 values�: ab initio values of Table IV
shifted up by 60.786 mhartree to be consistent with the display of RKR data
in Ref. 35.
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ab initio values are indicated by open circles. The agreement
between the two data sets is manifestly good. The quality of
the RKR curve suffers, as is well known,39 when its value
comes close to the dissociation energy at about 1.16 and
2.79 Å.

B. The dissociation curve of F2 exhibits a Gaussian
decay

Surprisingly, the dissociation curve exhibits a Gaussian
decay as the internuclear distance increases from the equilib-

rium geometry of 1.411 93 to 2.8 Å. This remarkable feature
is documented in Fig. 3, which displays plots of the natural
logarithms of the absolute values of the energy differences
�E�R�−E���� of the following four dissociation curves ver-
sus R as well as R2.

�1� Top panel: The “experimental” RKR curve of Colbourn
et al.35

�2� Second panel from top: The curve given in the last
column of Table IV of the present investigation.

FIG. 3. The rise of the potential energy curves from the equilibrium distance �1.411 93 Å� toward the dissociation limit. Plotted is the natural logarithm of
�E= �V���−V�R�� vs R on the right panels ��a�–�d�� and vs R2 on the left panels ��e�–�h��. First row ��a� and �e��: RKR potential of Ref. 35. Second row ��b�
and �f��: the present potential �fully correlated+CBS limit+relativity�. Third row ��c� and �g��: Raleigh-Schrödinger second order perturbation theory �fully
correlated, no relativity, augmented quintuple zeta basis�. Fourth row ��d� and �h��: multireference configuration interaction.
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�3� Third panel from top: The curve obtained by a multi-
reference second order Raleigh-Schrödinger perturba-
tion theory that correlates all electrons of the
FORS�14/8� reference function, using augmented
quintuple-zeta �aug-cc-pCV5Z� basis sets.

�4� Bottom panel: The curve of a MRCISD calculation cor-
relating all orbitals of the FORS�14/8� reference func-
tion using augmented quintuple-zeta �aug-cc-pCV5Z�
basis sets.
The two last mentioned calculations were performed
with the MOLPRO code.43

For each method of calculation, the left panel shows the
plot versus R2 and the right panel shows the plot versus R. It
is manifest that all of these potential energy curves conform
much more closely to a Gaussian than to an exponential
decay up to about 3 Å. They certainly do not exhibit an
inverse-power decay up to that point.

IV. LONG-RANGE DEPENDENCE ON THE
INTERNUCLEAR DISTANCE

The highest experimental vibrational level of F2 inter-
sects the experimental dissociation curve, which Colbourn
et al.35 derived by the RKR method, at about 2.8 Å, i.e.,
twice the equilibrium distance. On the other hand, beyond
this distance, the possible error in the ab initio calculations
of the preceding paper,1 becomes comparable to the value of
the potential energy itself. Thus, neither the spectroscopic
nor the theoretical information presently available allows
precise conclusions regarding the potential energy surface
�PES� values beyond about 3 Å.

An analysis of the long-range interactions is nonetheless
relevant because it will shed light on the reasons for the steep
Gaussian decay noted in the preceding section. We shall ar-
gue that, as the atoms approach each other, the descent of the
potential energy curve to the minimum is at first impeded by
two repulsive forces: one is due to the loss of spin-orbit
coupling, the other is due to quadrupole-quadrupole interac-

tions. The descent then occurs very rapidly as the exponen-
tially increasing orbital overlap generates covalent attrac-
tions through electron sharing.

A. Closer examination of spin-orbit coupling

The spin-orbit coupling interactions described in Sec.
II C involved the 12 covalent states enumerated in Eqs.
�6a�–�6c�. The long-range �R�2.5 Å� variation of their en-
ergies with the internuclear distance before SO coupling is
exhibited in Fig. 4. These plots were obtained with
FORS�10/6� wavefunctions using cc-pVTZ basis sets. Very
similar plots would result with the cc-pVQZ basis sets. �Note
that the total range from the bottom to the top of the energy
scale is only 1 mhartree�. While at 3.8 Å, the 12 states still
spread over an energy range of 0.3 mhartree, this range
shrinks to less than 0.007 mhartree at 8 Å.

The figure exhibits several remarkable features. Upon
approach from large distances, the 1�g

+ state, which is the
ground state at equilibrium and the real object of our interest,
begins the bonding descent only at about 2.9 Å, whereas the
1�g and 3�u states start to descend already at distances
larger than 4 Å even though they are repulsive at shorter
distances. As a consequence the � states cross the 1�g

+ state
between 2.6 Å and 3 Å. It is furthermore striking that, at the
distance of 3.8 Å, the 12 covalent states have coalesced into
four distinct limiting values. We shall see in the next section
that both features are manifestations of the quadrupole-
quadrupole interactions between the two F atoms at large
distances.

The energy curves that result from performing the spin-
orbit coupling calculations for the 12 states of Fig. 4 are
shown in Fig. 5. Only the lowest five states �eight CSFs� are
displayed. Each of them is identified by 	= �MJ�, which re-
mains a good quantum number, as mentioned in Sec. II C.
The symmetry distinction g versus u manifestly remains a
rigorous classification as well. In the figure, each spin-orbit
coupled state is moreover characterized by the states that are
its main contributors.

FIG. 4. The 12 covalent states �containing 36 CSFs� in
the FORS�10/6� space that are included in the spin-orbit
interaction coupling calculations. The energy curves are
calculated at the FORS�10/6� level with a cc-pVTZ ba-
sis. �The slight dip at about 3.3 Å is due to state aver-
aging here and is absent in Fig. 7.�
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The ground state at shorter distances is designated as
1�g

+ / 3�g, indicating that it is dominated by the 1�g
+ state

with a small admixture of the 3�g state. At the right end, its
curve is designated by the symbol 1�g

+ / 3�g
− / 3�g indicating

that for larger distances �beyond 3.1 Å� a 3�g
− admixture is

actually stronger than the 3�g admixture. The crossing be-
tween the 1�g

+ state and the lowest 3�u state survives the
spin-orbit interaction because of the g-u difference. The
crossing between the 1�g

+ state and the lowest 1�g state
survives the spin-orbit interaction because of the difference
in MJ.

The energy difference between the 1�g
+ / 3�g curve in

Fig. 5 and the lowest 1�g
+ curve in Fig. 4 is the ground state

spin-orbit coupling. The upper panel in the earlier discussed
Fig. 1 displays the analogous two curves obtained with the
quadruple-zeta basis sets. The comparison of the correspond-
ing curves in Figs. 4 and 5, as well as those in Fig. 1, clearly
shows that spin-orbit coupling has a repulsive effect on the
ground state potential energy curve.

It would seem likely that the addition of dynamic elec-
tron correlation will not change the relative positioning of
the two lowest curves in Fig. 5, i.e., �1�g

+ / 3�g� and
�3�u / 3�u�. In the context of nuclear dynamics, there exists
therefore the possibility of a nonadiabatic coupling between
these two states in the neighborhood of their intersection. If
so, such nonadiabatic interactions may influence the highest
vibrational levels of the ground state.

B. Quadrupolar electrostatic interactions
and dispersion forces

In its �1s22s22p5− 2P� ground state, the F atom has a
quadrupolar density. As was already discussed by Knipp44 in
1938, there exists therefore a quadrupole-quadrupole interac-
tion ��R−5� between the atoms in F2 at large distances, in
addition to the London dispersion ��R−6� interaction. Ne-
glecting terms of higher order, one would therefore expect a
long-range potential of the form

VLR�R� = D − C5/R5 − C6/R6 − , . . . , �8�

with D being the dissociation energy.45–47

The interaction between the quadrupoles depends on
their alignment. If they are coaxially aligned, they repel each
other, since here �see, e.g., Ref. 48�

− C5 = 6
2 = 6�0.731�2 a.u. = 133.0 mhartree Å5, �9a�

where we have inserted the quadrupole moment � calculated
for the F atom by Medved et al.49 using the CASPT2
method. If, on the other hand, the quadrupole axis of one
atom coincides with the internuclear axis while the quadru-
pole axis on the other atom is perpendicular to it, then one
has an attraction,48 viz.,

− C5 = − 3
2 = − 3�0.731�2 a.u. = − 66.5 mhartree Å5.

�9b�

Dispersion, on the other hand, is always attractive. Chu
and Dalgarno50 have obtained the dispersion coefficient C6

for F2 by imaginary frequency integration of the square of
the atomic polarizability of the F atom, which they calcu-
lated by time-dependent density functional theory. They
found50

C6 = 9.52 a.u. = 209.0 mhartree Å6. �10�

The long-range potentials VLR that result by inserting the
values �9a�, �9b�, and �10� into Eq. �8� are plotted in Fig. 6;
the upper panel corresponding to the repulsive quadrupole
alignment and the lower panel corresponding to the attractive
quadrupole alignment. For the coaxial alignment, the quadru-
polar repulsion is seen to dominate everywhere in the range
of interest. Around 3 Å, the sum of the two terms is repulsive
by about 0.25 mhartree. The possible competition between
quadrupolar and dispersion interactions was already consid-
ered by Chang.45

In the lowest 1�g
+ state, the quadrupoles of the two F

atoms are coaxially aligned51–53 and hence repel each other.
In the lowest two � states, on the other hand, the quadrupole

FIG. 5. Energy curves of the four lowest states �8
CSFs� that result from the spin-orbit interactions be-
tween the 12 states in the covalent FORS�10/6� space
shown in Fig. 4. The states are labeled by the value of
	= �MJ�= �ML+MS�, by g and u, and by their main con-
tributing states �which were displayed in Fig. 4� in or-
der of importance. Since these contributors can change
along the curve, they are shown at both ends.
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axis of one atom coincides with the internuclear axis while
that of the other atom is perpendicular to it so that an attrac-
tion results. This is the reason for the behavior of these states
at large distances, which was discussed in the preceding sec-
tion. Furthermore, Knipp44 predicted already in 1938 that the
lowest 12 covalent states in F2 would coalesce into four en-
ergy levels in exactly the way we find at 3.8 Å, as shown in
Fig. 4, and he furthermore predicted exactly the number and
the symmetry characteristics of the states for each of the four
groups, as they are identified in Fig. 4.

C. Resolution of the total energy of the ground state

The influence of the various contributions to the poten-
tial energy curve is exhibited in Fig. 7, where all curves are
shifted to zero energy value at the separated atom limit.
Within the quantum mechanical framework, the multipole
interaction is expected to be embedded in the 1�g

+ configu-
ration of the FORS of Eq. �6a�. The solid curve labeled
FORS�14/8� represents the CBS limit of this full-valence-
space energy. The light solid line displays the quadrupole-
quadrupole repulsion from Fig. 6. It is apparent that this
repulsion is reflected in the long-range repulsive character of
the FORS energy. This quantitative observation, in conjunc-
tion with the theoretically predicted fusing of the 12 valence
states into four groups and the crossing with the � states

discussed in the preceding paragraph, leaves no doubt about
the influence of the quadrupolar forces on the shapes of the
potential energy curves at long range.

The solid line labeled �FORS�14 /8�+SO	 is obtained by
adding the spin-orbit interaction to the FORS�14/8� limit. It
shows how the SO coupling increases the repulsive character
of the potential energy curve at this level of nondynamic
correlation.

The solid curve labeled CBS+CV represents the nonrel-
ativistic potential energy containing all-electron correlations
but no SO coupling. It shows that the sum of all dynamic
correlations overcomes the repulsive character found at the
nondynamic correlation level. This observation is confirmed
by the two dashed lines: one, labeled RSPT2, represents a
multireference second-order Raleigh-Schrödinger perturba-
tion calculation; the other, labeled MRCI, represents a MR-
CISD calculation. Both correlate all electrons of a
FORS�14/8� reference function and use augmented
quintuple-zeta �aug-cc-pCV5Z� basis sets. These two curves
show that dynamic correlations almost remove the repulsive
hump of the FORS�14/8� approximation, although they are
not as effective as the CEEIS full CI calculations.

Finally, addition of SO coupling and the scalar relativis-
tic contributions yields the curve labeled CBS+CV+SO
+SR, which is the actual ab initio potential energy curve. It
is apparent that the energy lowering due to the dynamic cor-
relations eliminates the repulsive effects of quadrupole inter-
actions as well as spin-orbit coupling. But even so, upon
approach from large distances these two repulsive contribu-
tions initially counteract the attractive forces so that the de-
scent toward the minimum is at first checked and then occurs
more steeply than it would have been without this initial
impediment. This makes the Gaussian-type distance depen-
dence noted above understandable.

FIG. 6. Long-range quadrupole and London dispersion interactions in F2.
Upper panel: Repulsive alignment between the fluorine quadrupoles in the
1�g

+ ground state. Lower panel: Attractive alignment of the fluorine quadru-
poles in an excited state of � symmetry.

FIG. 7. Heavy solid lines: Potential energy curves embodying various con-
tributions of the present calculations, as indicated �see text�. Dashed lines:
Comparison calculations using simpler dynamic correlation descriptions, as
indicated �see text�. Light solid line: Quadrupole-quadrupole repulsion for
coaxial alignment from upper panel of Fig. 6. The curve labeled
FORS�14/8� is calculated using the aug-cc-pCV5Z basis. The two heavy
dots on this curve are the values of the CBS limit at 2.4 and 2.8 Å reported
in Table I of preceding paper �Ref. 1�. The solid curve is thus the CBS limit
on the scale of the figure.
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Even though, for R�2.8 Å, our dynamic correlation cal-
culations do not yield the potential with an error
�0.1 mhartree, the discussed features of Fig. 7 manifestly
exhibit that there exists a competition between the
quadrupole-quadrupole repulsion, the spin-orbit-coupling re-
pulsion, and the attractions due to dynamic correlations in
this long-range region. These competing influences make it
difficult to predict the quantitative long-range dependence of
the potential energy curve on the internuclear distance ex-
actly at this time. In this light, it is understandable why cal-
culations with shorter basis sets and/or simpler correlation
treatments may yield a slight hump on the potential energy
curve for R�3 Å, as is, e.g., exhibited by the MRCI curves
on Fig. 7, and as was also found by Lie and Clementi54 as
well as by Li and Paldus,55 who generated full CI energies
with a double-zeta basis.

We also note that, while the total electron correlation
eliminates the “precorrelation hump,” the discussion in Sec.
IV B showed that the r−6-type dispersion forces alone are
unable to overcome the quadrupole repulsions. One thus has
to infer that the total correlation must embody stronger at-
tractions than the standard dispersion terms or, alternatively,
that the value of the C6 coefficient calculated in Ref. 50 is
too small. We are currently examining this question in
greater detail.

V. CONCLUSIONS

In the preceding paper,1 the nonrelativistic potential en-
ergy curve of F2 had been determined within a few tenths of
a millihartree. In the present paper, the contributions of elec-
tron correlations involving the core, of spin-orbit coupling
and of scalar relativistic effects have been added in order to
be able to make contact with physical reality. These contri-
butions to the potential energy curve are found to have mag-
nitudes of up to 1.65 mhartree. They significantly improve
the overall quality of the ab initio potential energy curve, as
has also been observed by other researchers, who emphasize
the importance of these higher-order contributions.56–60 The
resulting energies agree with the experimentally deduced
RKR curve within the accuracy of the present calculations.
The diagonal non-Born-Oppenheimer corrections have not
been considered here since several studies58,61,62 imply that
their contributions to the potential curve of F2 are negligible.
In particular, Gauss et al.62 have recently demonstrated that,
while the diagonal Born-Oppenheimer contribution �DBOC�
to the total energy of F2 has a value of 1174.8 cm−1 at the
equilibrium distance, it contributes less than 1 cm−1 to the
dissociation energy since the sum of the DBOCs for two
fluorine atoms is 1175.6 cm−1.

Notably, it is found that the rise of the potential energy
curves from the minimum to the dissociation limit is rather
steep and, in fact, exhibits a Gaussian shape between the
equilibrium distance and the long-range region. This is
shown to be due to the fact that, at larger distances where the
overlap-dependent covalent attractions become weak,
quadrupole-quadrupole repulsions as well as spin-orbit cou-
pling repulsions counteract the dispersion attractions, dy-
namic electron correlations, and incipient covalent bonding.

These results suggest a reexamination of the notion35 that, in
the 1�g ground states of dihalogen molecules, dispersion
forces dominate the long-range potential. Also, the possibil-
ity of minute hump in the 1�g curve cannot be entirely ex-
cluded. We shall return to these questions in a subsequent
study.

The aforementioned quadrupole-quadrupole interactions
are also responsible for the fact that, at large distances, a 3�u
state lies below the nominal 1�g ground state and crosses it
at about twice the equilibrium distance. A nonadiabatic cou-
pling �in combination with spin-orbit interaction� between
these two states is therefore a possibility, which may be rel-
evant for nuclear dynamics including the highest vibrational
levels.
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