! EXAM 42. ! numerical gradient for CN, using open shell CC(2,3). ! ! This tests the numerical gradient driver, and also ! emphasizes that the Dunning correlation consistent ! basis sets should be used in spherical harmonic form. ! ! A numerical gradient computation requires the energy ! at the molecule's actual geometry, plus energies at ! a pair of geometries displaced along each of its ! totally symmetric directions. ! A diatomic has 1 totally symmetric degree of freedom, ! so this run requires 3 energies for 1 gradient. ! ! See METHOD=FULLNUM in $FORCE for numerical hessians, ! and RUNTYP=FFIELD for numerical polarizabilities. ! ! There are 30 AOs, 28 MOs, 2 frozen cores, so 5 alpha ! and 4 beta valence electrons are correlated. ! ! E(ROHF)= -92.1960778308, E(CCSD)= -92.4767618032, ! the CR-CCL energy E(CC(2,3)) = -92.4930167395, ! and RMS gradient= 0.026601131 at the CC(2,3) level. ! (will optimize to -92.4941853332 at 1.1966876) ! $contrl scftyp=rohf cctyp=cr-ccl mult=2 nzvar=1 runtyp=gradient numgrd=.true. ispher=1 $end $system timlim=4 $end $basis gbasis=ccd $end $zmat izmat(1)=1,1,2 $end $ccinp maxcc=50 $end $data CN...experimental geometry...X-2-sigma-plus state Cnv 4 C 6.0 0.0 0.0 0.0 N 7.0 0.0 0.0 1.1718 $end