----- GAMESS execution script 'rungms' ----- This job is running on host PaulDirac under operating system Linux at Thu Jun 20 13:31:10 EDT 2013 Available scratch disk space (Kbyte units) at beginning of the job is Filesystem 1K-blocks Used Available Use% Mounted on /dev/sdb1 709627400 192666560 480332240 29% /mnt/disk2 GAMESS temporary binary files will be written to /mnt/disk2/nikita/scr GAMESS supplementary output files will be written to /mnt/disk2/nikita/scr Copying input file exam42.inp to your run's scratch directory... cp tests/standard/exam42.inp /mnt/disk2/nikita/scr/exam42.F05 unset echo /mnt/disk2/nikita/gamess/ddikick.x /mnt/disk2/nikita/gamess/gamess.00.x exam42 -ddi 1 1 PaulDirac -scr /mnt/disk2/nikita/scr Distributed Data Interface kickoff program. Initiating 1 compute processes on 1 nodes to run the following command: /mnt/disk2/nikita/gamess/gamess.00.x exam42 ****************************************************** * GAMESS VERSION = 1 MAY 2013 (R1) * * FROM IOWA STATE UNIVERSITY * * M.W.SCHMIDT, K.K.BALDRIDGE, J.A.BOATZ, S.T.ELBERT, * * M.S.GORDON, J.H.JENSEN, S.KOSEKI, N.MATSUNAGA, * * K.A.NGUYEN, S.J.SU, T.L.WINDUS, * * TOGETHER WITH M.DUPUIS, J.A.MONTGOMERY * * J.COMPUT.CHEM. 14, 1347-1363(1993) * **************** 64 BIT INTEL VERSION **************** SINCE 1993, STUDENTS AND POSTDOCS WORKING AT IOWA STATE UNIVERSITY AND ALSO IN THEIR VARIOUS JOBS AFTER LEAVING ISU HAVE MADE IMPORTANT CONTRIBUTIONS TO THE CODE: IVANA ADAMOVIC, CHRISTINE AIKENS, YURI ALEXEEV, POOJA ARORA, ANDREY ASADCHEV, ROB BELL, PRADIPTA BANDYOPADHYAY, JONATHAN BENTZ, BRETT BODE, GALINA CHABAN, WEI CHEN, CHEOL HO CHOI, PAUL DAY, ALBERT DEFUSCO, TIM DUDLEY, DMITRI FEDOROV, GRAHAM FLETCHER, MARK FREITAG, KURT GLAESEMANN, DAN KEMP, GRANT MERRILL, NORIYUKI MINEZAWA, JONATHAN MULLIN, TAKESHI NAGATA, SEAN NEDD, HEATHER NETZLOFF, BOSILJKA NJEGIC, RYAN OLSON, MIKE PAK, JIM SHOEMAKER, LYUDMILA SLIPCHENKO, SAROM SOK, JIE SONG, TETSUYA TAKETSUGU, SIMON WEBB, SOOHAENG YOO, FEDERICO ZAHARIEV ADDITIONAL CODE HAS BEEN PROVIDED BY COLLABORATORS IN OTHER GROUPS: IOWA STATE UNIVERSITY: JOE IVANIC, LAIMUTIS BYTAUTAS, KLAUS RUEDENBERG UNIVERSITY OF TOKYO: KIMIHIKO HIRAO, TAKAHITO NAKAJIMA, TAKAO TSUNEDA, MUNEAKI KAMIYA, SUSUMU YANAGISAWA, KIYOSHI YAGI, MAHITO CHIBA, SEIKEN TOKURA, NAOAKI KAWAKAMI UNIVERSITY OF AARHUS: FRANK JENSEN UNIVERSITY OF IOWA: VISVALDAS KAIRYS, HUI LI NATIONAL INST. OF STANDARDS AND TECHNOLOGY: WALT STEVENS, DAVID GARMER UNIVERSITY OF PISA: BENEDETTA MENNUCCI, JACOPO TOMASI UNIVERSITY OF MEMPHIS: HENRY KURTZ, PRAKASHAN KORAMBATH UNIVERSITY OF ALBERTA: TOBY ZENG, MARIUSZ KLOBUKOWSKI UNIVERSITY OF NEW ENGLAND: MARK SPACKMAN MIE UNIVERSITY: HIROAKI UMEDA MICHIGAN STATE UNIVERSITY: KAROL KOWALSKI, MARTA WLOCH, JEFFREY GOUR, JESSE LUTZ, WEI LI, PIOTR PIECUCH UNIVERSITY OF SILESIA: MONIKA MUSIAL, STANISLAW KUCHARSKI FACULTES UNIVERSITAIRES NOTRE-DAME DE LA PAIX: OLIVIER QUINET, BENOIT CHAMPAGNE UNIVERSITY OF CALIFORNIA - SANTA BARBARA: BERNARD KIRTMAN INSTITUTE FOR MOLECULAR SCIENCE: KAZUYA ISHIMURA, MICHIO KATOUDA, AND SHIGERU NAGASE UNIVERSITY OF NOTRE DAME: DAN CHIPMAN KYUSHU UNIVERSITY: HARUYUKI NAKANO, FENG LONG GU, JACEK KORCHOWIEC, MARCIN MAKOWSKI, AND YURIKO AOKI, HIROTOSHI MORI AND EISAKU MIYOSHI PENNSYLVANIA STATE UNIVERSITY: TZVETELIN IORDANOV, CHET SWALINA, JONATHAN SKONE, SHARON HAMMES-SCHIFFER WASEDA UNIVERSITY: MASATO KOBAYASHI, TOMOKO AKAMA, TSUGUKI TOUMA, TAKESHI YOSHIKAWA, YASUHIRO IKABATA, HIROMI NAKAI NANJING UNIVERSITY: SHUHUA LI UNIVERSITY OF NEBRASKA: PEIFENG SU, DEJUN SI, NANDUN THELLAMUREGE, YALI WANG, HUI LI UNIVERSITY OF ZURICH: ROBERTO PEVERATI, KIM BALDRIDGE N. COPERNICUS UNIVERSITY AND JACKSON STATE UNIVERSITY: MARIA BARYSZ EXECUTION OF GAMESS BEGUN Thu Jun 20 13:31:10 2013 ECHO OF THE FIRST FEW INPUT CARDS - INPUT CARD>! EXAM 42. INPUT CARD>! numerical gradient for CN, using open shell CC(2,3). INPUT CARD>! INPUT CARD>! This tests the numerical gradient driver, and also INPUT CARD>! emphasizes that the Dunning correlation consistent INPUT CARD>! basis sets should be used in spherical harmonic form. INPUT CARD>! INPUT CARD>! A numerical gradient computation requires the energy INPUT CARD>! at the molecule's actual geometry, plus energies at INPUT CARD>! a pair of geometries displaced along each of its INPUT CARD>! totally symmetric directions. INPUT CARD>! A diatomic has 1 totally symmetric degree of freedom, INPUT CARD>! so this run requires 3 energies for 1 gradient. INPUT CARD>! INPUT CARD>! See METHOD=FULLNUM in $FORCE for numerical hessians, INPUT CARD>! and RUNTYP=FFIELD for numerical polarizabilities. INPUT CARD>! INPUT CARD>! There are 30 AOs, 28 MOs, 2 frozen cores, so 5 alpha INPUT CARD>! and 4 beta valence electrons are correlated. INPUT CARD>! INPUT CARD>! E(ROHF)= -92.1960778308, E(CCSD)= -92.4767618032, INPUT CARD>! the CR-CCL energy E(CC(2,3)) = -92.4930167395, INPUT CARD>! and RMS gradient= 0.026601131 at the CC(2,3) level. INPUT CARD>! (will optimize to -92.4941853332 at 1.1966876) INPUT CARD>! INPUT CARD> $contrl scftyp=rohf cctyp=cr-ccl mult=2 nzvar=1 INPUT CARD> runtyp=gradient numgrd=.true. ispher=1 $end INPUT CARD> $system timlim=4 $end INPUT CARD> $basis gbasis=ccd $end INPUT CARD> $zmat izmat(1)=1,1,2 $end INPUT CARD> $ccinp maxcc=50 $end INPUT CARD> $data INPUT CARD>CN...experimental geometry...X-2-sigma-plus state INPUT CARD>Cnv 4 INPUT CARD> INPUT CARD>C 6.0 0.0 0.0 0.0 INPUT CARD>N 7.0 0.0 0.0 1.1718 INPUT CARD> $end 1000000 WORDS OF MEMORY AVAILABLE BASIS OPTIONS ------------- GBASIS=CCD IGAUSS= 0 POLAR=NONE NDFUNC= 0 NFFUNC= 0 DIFFSP= F NPFUNC= 0 DIFFS= F BASNAM= RUN TITLE --------- CN...experimental geometry...X-2-sigma-plus state THE POINT GROUP OF THE MOLECULE IS CNV THE ORDER OF THE PRINCIPAL AXIS IS 4 ATOM ATOMIC COORDINATES (BOHR) CHARGE X Y Z C 6.0 0.0000000000 0.0000000000 0.0000000000 N 7.0 0.0000000000 0.0000000000 2.2143809124 INTERNUCLEAR DISTANCES (ANGS.) ------------------------------ 1 C 2 N 1 C 0.0000000 1.1718000 * 2 N 1.1718000 * 0.0000000 * ... LESS THAN 3.000 ATOMIC BASIS SET ---------------- THE CONTRACTED PRIMITIVE FUNCTIONS HAVE BEEN UNNORMALIZED THE CONTRACTED BASIS FUNCTIONS ARE NOW NORMALIZED TO UNITY SHELL TYPE PRIMITIVE EXPONENT CONTRACTION COEFFICIENT(S) C 1 S 1 6665.0000000 0.000691583963 1 S 2 1000.0000000 0.005325796153 1 S 3 228.0000000 0.027060721042 1 S 4 64.7100000 0.101656846141 1 S 5 21.0600000 0.274574823617 1 S 6 7.4950000 0.448294318924 1 S 7 2.7970000 0.284902610715 1 S 8 0.5215000 0.015194859206 2 S 9 6665.0000000 -0.000293269653 2 S 10 1000.0000000 -0.002318035474 2 S 11 228.0000000 -0.011499786039 2 S 12 64.7100000 -0.046826727010 2 S 13 21.0600000 -0.128466168750 2 S 14 7.4950000 -0.301266272463 2 S 15 2.7970000 -0.255630702330 2 S 16 0.5215000 1.093793361012 3 S 17 0.1596000 1.000000000000 4 P 18 9.4390000 0.056979251590 4 P 19 2.0020000 0.313207211501 4 P 20 0.5456000 0.760376741738 5 P 21 0.1517000 1.000000000000 6 D 22 0.5500000 1.000000000000 N 7 S 23 9046.0000000 0.000699617413 7 S 24 1357.0000000 0.005386054630 7 S 25 309.3000000 0.027391021189 7 S 26 87.7300000 0.103150591982 7 S 27 28.5600000 0.278570663317 7 S 28 10.2100000 0.448294849454 7 S 29 3.8380000 0.278085928395 7 S 30 0.7466000 0.015431561233 8 S 31 9046.0000000 -0.000304990096 8 S 32 1357.0000000 -0.002408026379 8 S 33 309.3000000 -0.011944448725 8 S 34 87.7300000 -0.048925992909 8 S 35 28.5600000 -0.134472724725 8 S 36 10.2100000 -0.315112577700 8 S 37 3.8380000 -0.242857832550 8 S 38 0.7466000 1.094382206854 9 S 39 0.2248000 1.000000000000 10 P 40 13.5500000 0.058905676772 10 P 41 2.9170000 0.320461106714 10 P 42 0.7973000 0.753042061792 11 P 43 0.2185000 1.000000000000 12 D 44 0.8170000 1.000000000000 TOTAL NUMBER OF BASIS SET SHELLS = 12 NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS = 30 NOTE: THIS RUN WILL RESTRICT THE MO VARIATION SPACE TO SPHERICAL HARMONICS. THE NUMBER OF ORBITALS KEPT IN THE VARIATIONAL SPACE WILL BE PRINTED LATER. NUMBER OF ELECTRONS = 13 CHARGE OF MOLECULE = 0 SPIN MULTIPLICITY = 2 NUMBER OF OCCUPIED ORBITALS (ALPHA) = 7 NUMBER OF OCCUPIED ORBITALS (BETA ) = 6 TOTAL NUMBER OF ATOMS = 2 THE NUCLEAR REPULSION ENERGY IS 18.9669264961 THIS MOLECULE IS RECOGNIZED AS BEING LINEAR, ORBITAL LZ DEGENERACY TOLERANCE ETOLLZ= 1.00E-06 $CONTRL OPTIONS --------------- SCFTYP=ROHF RUNTYP=GRADIENT EXETYP=RUN MPLEVL= 0 CITYP =NONE CCTYP =CR-CCL VBTYP =NONE DFTTYP=NONE TDDFT =NONE MULT = 2 ICHARG= 0 NZVAR = 1 COORD =UNIQUE PP =NONE RELWFN=NONE LOCAL =NONE NUMGRD= T ISPHER= 1 NOSYM = 0 MAXIT = 30 UNITS =ANGS PLTORB= F MOLPLT= F AIMPAC= F FRIEND= NPRINT= 7 IREST = 0 GEOM =INPUT NORMF = 0 NORMP = 0 ITOL = 20 ICUT = 9 INTTYP=BEST GRDTYP=BEST QMTTOL= 1.0E-06 $SYSTEM OPTIONS --------------- REPLICATED MEMORY= 1000000 WORDS (ON EVERY NODE). DISTRIBUTED MEMDDI= 0 MILLION WORDS IN AGGREGATE, MEMDDI DISTRIBUTED OVER 1 PROCESSORS IS 0 WORDS/PROCESSOR. TOTAL MEMORY REQUESTED ON EACH PROCESSOR= 1000000 WORDS. TIMLIM= 4.00 MINUTES, OR 0.0 DAYS. PARALL= F BALTYP= DLB KDIAG= 0 COREFL= F MXSEQ2= 300 MXSEQ3= 150 ---------------- PROPERTIES INPUT ---------------- MOMENTS FIELD POTENTIAL DENSITY IEMOM = 1 IEFLD = 0 IEPOT = 0 IEDEN = 0 WHERE =COMASS WHERE =NUCLEI WHERE =NUCLEI WHERE =NUCLEI OUTPUT=BOTH OUTPUT=BOTH OUTPUT=BOTH OUTPUT=BOTH IEMINT= 0 IEFINT= 0 IEDINT= 0 MORB = 0 EXTRAPOLATION IN EFFECT DIIS IN EFFECT ORBITAL PRINTING OPTION: NPREO= 1 30 2 1 ------------------------------- INTEGRAL TRANSFORMATION OPTIONS ------------------------------- NWORD = 0 CUTOFF = 1.0E-09 MPTRAN = 0 DIRTRF = F AOINTS =DUP ---------------------- INTEGRAL INPUT OPTIONS ---------------------- NOPK = 1 NORDER= 0 SCHWRZ= F ------------------------------------------- EQUATION OF MOTION INPUT FOR EXCITED STATES ------------------------------------------- OPTIONS FOR STATE SELECTION: GROUP =C1 NSTATE= 0, 0, 0, 0, 0, 0, 0, 0 IROOT = 1, 0 OPTIONS FOR THE EOM-CCSD: MEOM = 0 MAXEOM= 50 MICEOM= 80 CVGEOM= 1.0E-07 OPTIONS FOR EOM-CCSD WITH ROHF REFERENCES: JREST = 0 MULT = -1 OPTIONS FOR PROPERTIES: CCPRP = F CCPRPE = F OPTIONS FOR INITIAL GUESSES: MINIT = 2 MACT = 0 NOACT = 0 NUACT = 0 NO DOUBLE EXCITATIONS WILL BE INCLUDED IN THE INITIAL GUESS --- ENCODED Z MATRIX --- COORD TYPE I J K L M N 1 1 1 2 THE DETERMINANT OF THE G MATRIX IS 10**( -1) -------------------- INTERNAL COORDINATES -------------------- - - ATOMS - - COORDINATE COORDINATE NO. TYPE I J K L M N (BOHR,RAD) (ANG,DEG) ---------------------------------------------------------------- 1 STRETCH 1 2 2.2143809 1.1718000 ------------------------------------------ THE POINT GROUP IS CNV, NAXIS= 4, ORDER= 8 ------------------------------------------ -- VARIATIONAL SPACE WILL BE RESTRICTED TO PURE SPHERICAL HARMONICS ONLY -- AFTER EXCLUDING CONTAMINANT COMBINATIONS FROM THE CARTESIAN GAUSSIAN BASIS SET, THE NUMBER OF SPHERICAL HARMONICS KEPT IN THE VARIATION SPACE IS 28 DIMENSIONS OF THE SYMMETRY SUBSPACES ARE A1 = 12 A2 = 0 B1 = 2 B2 = 2 E = 6 ..... DONE SETTING UP THE RUN ..... STEP CPU TIME = 0.01 TOTAL CPU TIME = 0.0 ( 0.0 MIN) TOTAL WALL CLOCK TIME= 0.0 SECONDS, CPU UTILIZATION IS 50.00% -------------------------------- SINGLE POINT ENERGY AND GRADIENT -------------------------------- ******************** 1 ELECTRON INTEGRALS ******************** ...... END OF ONE-ELECTRON INTEGRALS ...... STEP CPU TIME = 0.01 TOTAL CPU TIME = 0.0 ( 0.0 MIN) TOTAL WALL CLOCK TIME= 0.0 SECONDS, CPU UTILIZATION IS 66.67% ------------- GUESS OPTIONS ------------- GUESS =HUCKEL NORB = 0 NORDER= 0 MIX = F PRTMO = F PUNMO = F TOLZ = 1.0E-08 TOLE = 1.0E-05 SYMDEN= F PURIFY= F INITIAL GUESS ORBITALS GENERATED BY HUCKEL ROUTINE. HUCKEL GUESS REQUIRES 8672 WORDS. STATISTICS FOR GENERATION OF SYMMETRY ORBITAL -Q- MATRIX NUMBER OF CARTESIAN ATOMIC ORBITALS= 30 NUMBER OF SPHERICAL CONTAMINANTS DROPPED= 2 NUMBER OF LINEARLY DEPENDENT MOS DROPPED= 0 TOTAL NUMBER OF MOS IN VARIATION SPACE= 28 SYMMETRIES FOR INITIAL GUESS ORBITALS FOLLOW. ALPHA SET(S). 7 ORBITALS ARE OCCUPIED ( 2 CORE ORBITALS). 3=A1 4=E 5=E 6=A1 7=A1 8=E 9=E 10=A1 11=A1 12=A1 13=A1 14=A1 15=A1 16=A1 17=B1 SYMMETRIES FOR INITIAL GUESS ORBITALS FOLLOW. BETA SET(S). 6 ORBITALS ARE OCCUPIED ( 2 CORE ORBITALS). 3=A1 4=E 5=E 6=A1 7=A1 8=E 9=E 10=A1 11=A1 12=A1 13=A1 14=A1 15=A1 16=A1 ...... END OF INITIAL ORBITAL SELECTION ...... STEP CPU TIME = 0.00 TOTAL CPU TIME = 0.0 ( 0.0 MIN) TOTAL WALL CLOCK TIME= 0.0 SECONDS, CPU UTILIZATION IS 66.67% ---------------------- AO INTEGRAL TECHNOLOGY ---------------------- S,P,L SHELL ROTATED AXIS INTEGRALS, REPROGRAMMED BY KAZUYA ISHIMURA (IMS) AND JOSE SIERRA (SYNSTAR). S,P,D,L SHELL ROTATED AXIS INTEGRALS PROGRAMMED BY KAZUYA ISHIMURA (INSTITUTE FOR MOLECULAR SCIENCE). S,P,D,F,G SHELL TO TOTAL QUARTET ANGULAR MOMENTUM SUM 5, ERIC PROGRAM BY GRAHAM FLETCHER (ELORET AND NASA ADVANCED SUPERCOMPUTING DIVISION, AMES RESEARCH CENTER). S,P,D,F,G,L SHELL GENERAL RYS QUADRATURE PROGRAMMED BY MICHEL DUPUIS (PACIFIC NORTHWEST NATIONAL LABORATORY). -------------------- 2 ELECTRON INTEGRALS -------------------- THE -PK- OPTION IS OFF, THE INTEGRALS ARE NOT IN SUPERMATRIX FORM. STORING 15000 INTEGRALS/RECORD ON DISK, USING 12 BYTES/INTEGRAL. TWO ELECTRON INTEGRAL EVALUATION REQUIRES 90474 WORDS OF MEMORY. II,JST,KST,LST = 1 1 1 1 NREC = 1 INTLOC = 1 II,JST,KST,LST = 2 1 1 1 NREC = 1 INTLOC = 2 II,JST,KST,LST = 3 1 1 1 NREC = 1 INTLOC = 7 II,JST,KST,LST = 4 1 1 1 NREC = 1 INTLOC = 22 II,JST,KST,LST = 5 1 1 1 NREC = 1 INTLOC = 67 II,JST,KST,LST = 6 1 1 1 NREC = 1 INTLOC = 214 II,JST,KST,LST = 7 1 1 1 NREC = 1 INTLOC = 1189 II,JST,KST,LST = 8 1 1 1 NREC = 1 INTLOC = 1867 II,JST,KST,LST = 9 1 1 1 NREC = 1 INTLOC = 2713 II,JST,KST,LST = 10 1 1 1 NREC = 1 INTLOC = 3757 II,JST,KST,LST = 11 1 1 1 NREC = 1 INTLOC = 7134 II,JST,KST,LST = 12 1 1 1 NREC = 1 INTLOC =12131 TOTAL NUMBER OF NONZERO TWO-ELECTRON INTEGRALS = 28697 2 INTEGRAL RECORDS WERE STORED ON DISK FILE 8. ...... END OF TWO-ELECTRON INTEGRALS ..... STEP CPU TIME = 0.07 TOTAL CPU TIME = 0.1 ( 0.0 MIN) TOTAL WALL CLOCK TIME= 0.1 SECONDS, CPU UTILIZATION IS 90.00% --------------------------- ROHF SCF CALCULATION --------------------------- NUCLEAR ENERGY = 18.9669264961 MAXIT = 30 NPUNCH= 2 MULT= 2 EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T SOSCF=F DENSITY MATRIX CONV= 1.00E-06 ROHF CANONICALIZATION PARAMETERS C-C O-O V-V ALPHA -0.5000 0.5000 1.5000 BETA 1.5000 0.5000 -0.5000 MEMORY REQUIRED FOR UHF/ROHF ITERS= 39215 WORDS. ITER EX TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR 1 0 -91.9320970780 -91.9320970780 0.345253246 0.639996018 * * * INITIATING DIIS PROCEDURE * * * 2 1 -92.1608481114 -0.2287510334 0.215719344 0.115070460 3 2 -92.1167058525 0.0441422589 0.121429796 0.196358211 4 3 -92.1957869506 -0.0790810981 0.011362644 0.010966482 5 4 -92.1960552003 -0.0002682496 0.002507807 0.002027758 6 5 -92.1960754265 -0.0000202262 0.001018764 0.000657051 7 6 -92.1960774585 -0.0000020320 0.000403029 0.000215382 8 7 -92.1960777913 -0.0000003328 0.000170770 0.000105826 9 8 -92.1960778304 -0.0000000391 0.000016465 0.000010546 10 9 -92.1960778308 -0.0000000004 0.000001453 0.000001699 11 10 -92.1960778308 0.0000000000 0.000000336 0.000000310 ROHF HAS CONVERGED, NOW COMPUTING EXACT ALPHA,BETA FOCK MATRICES FOR USE DURING THE COUPLED CLUSTER CALCULATION THAT FOLLOWS. ----------------- DENSITY CONVERGED ----------------- TIME TO FORM FOCK OPERATORS= 0.0 SECONDS ( 0.0 SEC/ITER) TIME TO SOLVE SCF EQUATIONS= 0.0 SECONDS ( 0.0 SEC/ITER) FINAL ROHF ENERGY IS -92.1960778308 AFTER 11 ITERATIONS -------------------- SPIN SZ = 0.500 S-SQUARED = 0.750 -------------------- LZ VALUE ANALYSIS FOR THE MOS ---------------------------------------- MO 1 ( 1) HAS LZ(WEIGHT)= 0.00(100.0%) MO 2 ( 2) HAS LZ(WEIGHT)= 0.00(100.0%) MO 3 ( 3) HAS LZ(WEIGHT)= 0.00(100.0%) MO 4 ( 4) HAS LZ(WEIGHT)= 0.00(100.0%) MO 5 ( 5) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 6 ( 5) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 7 ( 6) HAS LZ(WEIGHT)= 0.00(100.0%) MO 8 ( 7) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 9 ( 7) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 10 ( 8) HAS LZ(WEIGHT)= 0.00(100.0%) MO 11 ( 9) HAS LZ(WEIGHT)= 0.00(100.0%) MO 12 ( 10) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 13 ( 10) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 14 ( 11) HAS LZ(WEIGHT)= 0.00(100.0%) MO 15 ( 12) HAS LZ(WEIGHT)= 0.00(100.0%) MO 16 ( 13) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 17 ( 13) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 18 ( 14) HAS LZ(WEIGHT)=-2.00( 50.0%) 2.00( 50.0%) MO 19 ( 14) HAS LZ(WEIGHT)=-2.00( 50.0%) 2.00( 50.0%) MO 20 ( 15) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 21 ( 15) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 22 ( 16) HAS LZ(WEIGHT)= 0.00(100.0%) MO 23 ( 17) HAS LZ(WEIGHT)=-2.00( 50.0%) 2.00( 50.0%) MO 24 ( 17) HAS LZ(WEIGHT)=-2.00( 50.0%) 2.00( 50.0%) MO 25 ( 18) HAS LZ(WEIGHT)= 0.00(100.0%) MO 26 ( 19) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 27 ( 19) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 28 ( 20) HAS LZ(WEIGHT)= 0.00(100.0%) ------------ EIGENVECTORS ------------ 1 2 3 4 5 -15.6308 -11.3284 -1.2091 -0.5730 -0.4865 A1 A1 A1 A1 E 1 C 1 S -0.000222 1.000813 -0.013902 -0.006142 0.000000 2 C 1 S -0.000578 0.000857 0.273030 -0.279748 0.000000 3 C 1 S 0.003195 -0.004436 0.126977 -0.147912 0.000000 4 C 1 X 0.000000 0.000000 0.000000 0.000000 0.407105 5 C 1 Y 0.000000 0.000000 0.000000 0.000000 0.000000 6 C 1 Z -0.000908 -0.000274 0.213544 -0.097633 0.000000 7 C 1 X 0.000000 0.000000 0.000000 0.000000 0.233705 8 C 1 Y 0.000000 0.000000 0.000000 0.000000 0.000000 9 C 1 Z 0.001590 0.000133 0.019753 0.033478 0.000000 10 C 1 XX 0.000398 -0.000219 -0.014349 0.000745 0.000000 11 C 1 YY 0.000398 -0.000219 -0.014349 0.000745 0.000000 12 C 1 ZZ -0.000797 0.000439 0.028699 -0.001490 0.000000 13 C 1 XY 0.000000 0.000000 0.000000 0.000000 0.000000 14 C 1 XZ 0.000000 0.000000 0.000000 0.000000 0.046363 15 C 1 YZ 0.000000 0.000000 0.000000 0.000000 0.000000 16 N 2 S 1.001357 -0.000865 -0.012262 0.002835 0.000000 17 N 2 S 0.001703 -0.000192 0.384887 0.269017 0.000000 18 N 2 S -0.006277 0.001390 0.295236 0.423198 0.000000 19 N 2 X 0.000000 0.000000 0.000000 0.000000 0.438555 20 N 2 Y 0.000000 0.000000 0.000000 0.000000 0.000000 21 N 2 Z -0.002594 -0.000261 -0.161307 0.453022 0.000000 22 N 2 X 0.000000 0.000000 0.000000 0.000000 0.279377 23 N 2 Y 0.000000 0.000000 0.000000 0.000000 0.000000 24 N 2 Z 0.001911 -0.000088 -0.025451 0.268839 0.000000 25 N 2 XX -0.000394 -0.000305 -0.011218 0.013351 0.000000 26 N 2 YY -0.000394 -0.000305 -0.011218 0.013351 0.000000 27 N 2 ZZ 0.000789 0.000611 0.022436 -0.026703 0.000000 28 N 2 XY 0.000000 0.000000 0.000000 0.000000 0.000000 29 N 2 XZ 0.000000 0.000000 0.000000 0.000000 -0.039698 30 N 2 YZ 0.000000 0.000000 0.000000 0.000000 0.000000 6 7 8 9 10 -0.4865 -0.3373 0.1338 0.1338 0.3595 E A1 E E A1 1 C 1 S 0.000000 -0.012489 0.000000 0.000000 0.015309 2 C 1 S 0.000000 -0.303040 0.000000 0.000000 -0.071008 3 C 1 S 0.000000 -0.480138 0.000000 0.000000 -2.386263 4 C 1 X 0.000000 0.000000 0.410890 0.000000 0.000000 5 C 1 Y 0.407105 0.000000 0.000000 0.410890 0.000000 6 C 1 Z 0.000000 0.528423 0.000000 0.000000 0.072174 7 C 1 X 0.000000 0.000000 0.722185 0.000000 0.000000 8 C 1 Y 0.233705 0.000000 0.000000 0.722185 0.000000 9 C 1 Z 0.000000 0.194936 0.000000 0.000000 -2.291429 10 C 1 XX 0.000000 0.010630 0.000000 0.000000 0.016465 11 C 1 YY 0.000000 0.010630 0.000000 0.000000 0.016465 12 C 1 ZZ 0.000000 -0.021260 0.000000 0.000000 -0.032929 13 C 1 XY 0.000000 0.000000 0.000000 0.000000 0.000000 14 C 1 XZ 0.000000 0.000000 -0.079431 0.000000 0.000000 15 C 1 YZ 0.046363 0.000000 0.000000 -0.079431 0.000000 16 N 2 S 0.000000 0.006263 0.000000 0.000000 -0.077876 17 N 2 S 0.000000 0.053761 0.000000 0.000000 0.054338 18 N 2 S 0.000000 -0.033148 0.000000 0.000000 2.784154 19 N 2 X 0.000000 0.000000 -0.394749 0.000000 0.000000 20 N 2 Y 0.438555 0.000000 0.000000 -0.394749 0.000000 21 N 2 Z 0.000000 -0.246004 0.000000 0.000000 -0.100981 22 N 2 X 0.000000 0.000000 -0.632652 0.000000 0.000000 23 N 2 Y 0.279377 0.000000 0.000000 -0.632652 0.000000 24 N 2 Z 0.000000 -0.141326 0.000000 0.000000 -1.036186 25 N 2 XX 0.000000 -0.010131 0.000000 0.000000 -0.029648 26 N 2 YY 0.000000 -0.010131 0.000000 0.000000 -0.029648 27 N 2 ZZ 0.000000 0.020262 0.000000 0.000000 0.059295 28 N 2 XY 0.000000 0.000000 0.000000 0.000000 0.000000 29 N 2 XZ 0.000000 0.000000 -0.009831 0.000000 0.000000 30 N 2 YZ -0.039698 0.000000 0.000000 -0.009831 0.000000 11 12 13 14 15 0.6006 0.6370 0.6370 0.8598 0.9902 A1 E E A1 A1 1 C 1 S -0.450718 0.000000 0.000000 0.438809 -0.208018 2 C 1 S -1.101308 0.000000 0.000000 0.983889 -0.626465 3 C 1 S 2.080723 0.000000 0.000000 0.581045 1.148227 4 C 1 X 0.000000 -0.986719 0.000000 0.000000 0.000000 5 C 1 Y 0.000000 0.000000 -0.986719 0.000000 0.000000 6 C 1 Z 0.688804 0.000000 0.000000 0.460688 -0.482733 7 C 1 X 0.000000 1.082709 0.000000 0.000000 0.000000 8 C 1 Y 0.000000 0.000000 1.082709 0.000000 0.000000 9 C 1 Z -0.017562 0.000000 0.000000 0.218610 0.726840 10 C 1 XX 0.041287 0.000000 0.000000 -0.042984 -0.274392 11 C 1 YY 0.041287 0.000000 0.000000 -0.042984 -0.274392 12 C 1 ZZ -0.082574 0.000000 0.000000 0.085968 0.548784 13 C 1 XY 0.000000 0.000000 0.000000 0.000000 0.000000 14 C 1 XZ 0.000000 -0.002594 0.000000 0.000000 0.000000 15 C 1 YZ 0.000000 0.000000 -0.002594 0.000000 0.000000 16 N 2 S -0.017666 0.000000 0.000000 0.001986 -0.074671 17 N 2 S -0.157390 0.000000 0.000000 -0.157515 -0.076838 18 N 2 S -0.822693 0.000000 0.000000 -0.963397 -0.714875 19 N 2 X 0.000000 -0.062654 0.000000 0.000000 0.000000 20 N 2 Y 0.000000 0.000000 -0.062654 0.000000 0.000000 21 N 2 Z -0.020975 0.000000 0.000000 -0.419391 -0.661636 22 N 2 X 0.000000 -0.047756 0.000000 0.000000 0.000000 23 N 2 Y 0.000000 0.000000 -0.047756 0.000000 0.000000 24 N 2 Z 0.638217 0.000000 0.000000 1.681484 0.552632 25 N 2 XX 0.006849 0.000000 0.000000 -0.031932 0.101465 26 N 2 YY 0.006849 0.000000 0.000000 -0.031932 0.101465 27 N 2 ZZ -0.013697 0.000000 0.000000 0.063864 -0.202930 28 N 2 XY 0.000000 0.000000 0.000000 0.000000 0.000000 29 N 2 XZ 0.000000 0.082295 0.000000 0.000000 0.000000 30 N 2 YZ 0.000000 0.000000 0.082295 0.000000 0.000000 16 17 18 19 20 1.0283 1.0283 1.2912 1.2912 1.4486 E E B2 B1 E 1 C 1 S 0.000000 0.000000 0.000000 0.000000 0.000000 2 C 1 S 0.000000 0.000000 0.000000 0.000000 0.000000 3 C 1 S 0.000000 0.000000 0.000000 0.000000 0.000000 4 C 1 X 0.175444 0.000000 0.000000 0.000000 -0.062926 5 C 1 Y 0.000000 0.175444 0.000000 0.000000 0.000000 6 C 1 Z 0.000000 0.000000 0.000000 0.000000 0.000000 7 C 1 X -0.671244 0.000000 0.000000 0.000000 0.205424 8 C 1 Y 0.000000 -0.671244 0.000000 0.000000 0.000000 9 C 1 Z 0.000000 0.000000 0.000000 0.000000 0.000000 10 C 1 XX 0.000000 0.000000 0.000000 0.819300 0.000000 11 C 1 YY 0.000000 0.000000 0.000000 -0.819300 0.000000 12 C 1 ZZ 0.000000 0.000000 0.000000 0.000000 0.000000 13 C 1 XY 0.000000 0.000000 0.946046 0.000000 0.000000 14 C 1 XZ -0.297257 0.000000 0.000000 0.000000 0.954320 15 C 1 YZ 0.000000 -0.297257 0.000000 0.000000 0.000000 16 N 2 S 0.000000 0.000000 0.000000 0.000000 0.000000 17 N 2 S 0.000000 0.000000 0.000000 0.000000 0.000000 18 N 2 S 0.000000 0.000000 0.000000 0.000000 0.000000 19 N 2 X -0.920332 0.000000 0.000000 0.000000 -0.496105 20 N 2 Y 0.000000 -0.920332 0.000000 0.000000 0.000000 21 N 2 Z 0.000000 0.000000 0.000000 0.000000 0.000000 22 N 2 X 1.387081 0.000000 0.000000 0.000000 -0.099254 23 N 2 Y 0.000000 1.387081 0.000000 0.000000 0.000000 24 N 2 Z 0.000000 0.000000 0.000000 0.000000 0.000000 25 N 2 XX 0.000000 0.000000 0.000000 0.166770 0.000000 26 N 2 YY 0.000000 0.000000 0.000000 -0.166770 0.000000 27 N 2 ZZ 0.000000 0.000000 0.000000 0.000000 0.000000 28 N 2 XY 0.000000 0.000000 0.192569 0.000000 0.000000 29 N 2 XZ 0.017322 0.000000 0.000000 0.000000 -0.178311 30 N 2 YZ 0.000000 0.017322 0.000000 0.000000 0.000000 21 22 23 24 25 1.4486 1.5497 2.1570 2.1570 2.2083 E A1 B2 B1 A1 1 C 1 S 0.000000 0.015262 0.000000 0.000000 0.059487 2 C 1 S 0.000000 0.064102 0.000000 0.000000 -0.058256 3 C 1 S 0.000000 -3.527774 0.000000 0.000000 -0.163638 4 C 1 X 0.000000 0.000000 0.000000 0.000000 0.000000 5 C 1 Y -0.062926 0.000000 0.000000 0.000000 0.000000 6 C 1 Z 0.000000 -0.325638 0.000000 0.000000 -0.530733 7 C 1 X 0.000000 0.000000 0.000000 0.000000 0.000000 8 C 1 Y 0.205424 0.000000 0.000000 0.000000 0.000000 9 C 1 Z 0.000000 -2.040691 0.000000 0.000000 -0.311586 10 C 1 XX 0.000000 0.255937 0.000000 -0.325179 0.618636 11 C 1 YY 0.000000 0.255937 0.000000 0.325179 0.618636 12 C 1 ZZ 0.000000 -0.511874 0.000000 0.000000 -1.237272 13 C 1 XY 0.000000 0.000000 -0.375485 0.000000 0.000000 14 C 1 XZ 0.000000 0.000000 0.000000 0.000000 0.000000 15 C 1 YZ 0.954320 0.000000 0.000000 0.000000 0.000000 16 N 2 S 0.000000 -0.794948 0.000000 0.000000 0.633265 17 N 2 S 0.000000 -1.736001 0.000000 0.000000 1.341139 18 N 2 S 0.000000 5.265273 0.000000 0.000000 -0.361449 19 N 2 X 0.000000 0.000000 0.000000 0.000000 0.000000 20 N 2 Y -0.496105 0.000000 0.000000 0.000000 0.000000 21 N 2 Z 0.000000 -0.218076 0.000000 0.000000 -0.982577 22 N 2 X 0.000000 0.000000 0.000000 0.000000 0.000000 23 N 2 Y -0.099254 0.000000 0.000000 0.000000 0.000000 24 N 2 Z 0.000000 -1.599968 0.000000 0.000000 0.504325 25 N 2 XX 0.000000 0.046462 0.000000 0.865553 0.041610 26 N 2 YY 0.000000 0.046462 0.000000 -0.865553 0.041610 27 N 2 ZZ 0.000000 -0.092924 0.000000 0.000000 -0.083219 28 N 2 XY 0.000000 0.000000 0.999455 0.000000 0.000000 29 N 2 XZ 0.000000 0.000000 0.000000 0.000000 0.000000 30 N 2 YZ -0.178311 0.000000 0.000000 0.000000 0.000000 26 27 28 2.6596 2.6596 3.0826 E E A1 1 C 1 S 0.000000 0.000000 -0.651132 2 C 1 S 0.000000 0.000000 -1.319363 3 C 1 S 0.000000 0.000000 -1.760855 4 C 1 X 0.400935 0.000000 0.000000 5 C 1 Y 0.000000 0.400935 0.000000 6 C 1 Z 0.000000 0.000000 -1.276869 7 C 1 X 0.333053 0.000000 0.000000 8 C 1 Y 0.000000 0.333053 0.000000 9 C 1 Z 0.000000 0.000000 -0.875268 10 C 1 XX 0.000000 0.000000 0.247995 11 C 1 YY 0.000000 0.000000 0.247995 12 C 1 ZZ 0.000000 0.000000 -0.495990 13 C 1 XY 0.000000 0.000000 0.000000 14 C 1 XZ 0.867164 0.000000 0.000000 15 C 1 YZ 0.000000 0.867164 0.000000 16 N 2 S 0.000000 0.000000 -0.221021 17 N 2 S 0.000000 0.000000 -0.349780 18 N 2 S 0.000000 0.000000 3.050380 19 N 2 X -0.126670 0.000000 0.000000 20 N 2 Y 0.000000 -0.126670 0.000000 21 N 2 Z 0.000000 0.000000 -0.520367 22 N 2 X -0.546191 0.000000 0.000000 23 N 2 Y 0.000000 -0.546191 0.000000 24 N 2 Z 0.000000 0.000000 -1.598269 25 N 2 XX 0.000000 0.000000 -0.695162 26 N 2 YY 0.000000 0.000000 -0.695162 27 N 2 ZZ 0.000000 0.000000 1.390323 28 N 2 XY 0.000000 0.000000 0.000000 29 N 2 XZ 1.226094 0.000000 0.000000 30 N 2 YZ 0.000000 1.226094 0.000000 ...... END OF ROHF CALCULATION ...... STEP CPU TIME = 0.02 TOTAL CPU TIME = 0.1 ( 0.0 MIN) TOTAL WALL CLOCK TIME= 0.2 SECONDS, CPU UTILIZATION IS 73.33% ---------------------------------------------------------------- PROPERTY VALUES FOR THE ROHF SELF-CONSISTENT FIELD WAVEFUNCTION ---------------------------------------------------------------- --------------------------------------- MULLIKEN AND LOWDIN POPULATION ANALYSES --------------------------------------- MULLIKEN SPHERICAL HARMONIC POPULATIONS ATOM S P D F G H I TOTAL 1 C 1.84 1.52 0.03 0.00 0.00 0.00 0.00 3.40 2 N 1.85 1.73 0.02 0.00 0.00 0.00 0.00 3.60 MULLIKEN SPHERICAL HARMONIC POPULATIONS ATOM S P D F G H I TOTAL 1 C 1.41 1.03 0.04 0.00 0.00 0.00 0.00 2.48 2 N 1.84 1.66 0.02 0.00 0.00 0.00 0.00 3.52 ATOMIC SPIN POPULATION (ALPHA MINUS BETA) ATOM MULL.POP. LOW.POP. 1 C 0.920379 0.885321 2 N 0.079621 0.114679 ----- POPULATIONS IN EACH AO ----- MULLIKEN LOWDIN 1 C 1 S 2.00162 1.88330 2 C 1 S 0.73373 0.54300 3 C 1 S 0.51636 0.36424 4 C 1 X 0.55984 0.51155 5 C 1 Y 0.55984 0.51155 6 C 1 Z 0.62641 0.57902 7 C 1 X 0.33592 0.37972 8 C 1 Y 0.33592 0.37972 9 C 1 Z 0.13932 0.27917 10 C 1 XX 0.01391 0.11119 11 C 1 YY 0.00000 0.11119 12 C 1 ZZ 0.00000 0.22446 13 C 1 XY 0.02782 0.00000 14 C 1 XZ 0.02782 0.04425 15 C 1 YZ 0.00000 0.04425 16 N 2 S 2.00267 1.89032 17 N 2 S 0.84558 0.62462 18 N 2 S 0.83878 0.48760 19 N 2 X 0.61641 0.56147 20 N 2 Y 0.61641 0.56147 21 N 2 Z 0.85310 0.80030 22 N 2 X 0.44365 0.48166 23 N 2 Y 0.44365 0.48166 24 N 2 Z 0.41424 0.53656 25 N 2 XX 0.01430 0.17076 26 N 2 YY 0.00000 0.17076 27 N 2 ZZ 0.00000 0.22350 28 N 2 XY 0.01635 0.00000 29 N 2 XZ 0.01635 0.02135 30 N 2 YZ 0.00000 0.02135 ----- MULLIKEN ATOMIC OVERLAP POPULATIONS ----- (OFF-DIAGONAL ELEMENTS NEED TO BE MULTIPLIED BY 2) 1 2 1 4.9710893 2 0.9074313 6.2140482 TOTAL MULLIKEN AND LOWDIN ATOMIC POPULATIONS ATOM MULL.POP. CHARGE LOW.POP. CHARGE 1 C 5.878521 0.121479 5.966620 0.033380 2 N 7.121479 -0.121479 7.033380 -0.033380 MULLIKEN SPHERICAL HARMONIC POPULATIONS ATOM S P D F G H I TOTAL 1 C 3.25 2.56 0.07 0.00 0.00 0.00 0.00 5.88 2 N 3.69 3.39 0.05 0.00 0.00 0.00 0.00 7.12 ------------------------------- BOND ORDER AND VALENCE ANALYSIS BOND ORDER THRESHOLD=0.050 ------------------------------- BOND BOND BOND ATOM PAIR DIST ORDER ATOM PAIR DIST ORDER ATOM PAIR DIST ORDER 1 2 1.172 3.071 TOTAL BONDED FREE ATOM VALENCE VALENCE VALENCE 1 C 3.918 3.071 0.847 2 N 3.077 3.071 0.006 ----------------------------------------- ATOMIC SPIN DENSITY AT THE NUCLEUS (A.U.) ----------------------------------------- SPIN DENS ALPHA DENS BETA DENS 1 C 6.0 0.8179379 60.97741 60.15948 2 N 7.0 0.0311459 98.46670 98.43556 --------------------- ELECTROSTATIC MOMENTS --------------------- POINT 1 X Y Z (BOHR) CHARGE 0.000000 0.000000 1.192480 0.00 (A.U.) DX DY DZ /D/ (DEBYE) 0.000000 0.000000 -2.174180 2.174180 ...... END OF PROPERTY EVALUATION ...... STEP CPU TIME = 0.01 TOTAL CPU TIME = 0.1 ( 0.0 MIN) TOTAL WALL CLOCK TIME= 0.2 SECONDS, CPU UTILIZATION IS 75.00% --------------------------- COUPLED CLUSTER CALCULATION --------------------------- CCTYP =CR-CCL TOTAL NUMBER OF MOS = 28 NUMBER OF OCCUPIED MOS = 7 NUMBER OF FROZEN CORE MOS = 2 NUMBER OF FROZEN VIRTUAL MOS = 0 MAXIMUM CC ITERATIONS = 50 MAXIMUM DIIS ITERATIONS = -1 CONVERGENCE CRITERION FOR CC = 7 AMPLITUDE ACCURACY THRESHOLD = 0.0E+00 REGENERATING AO INTEGRAL LIST W/O SYMMETRY FOR THE INTEGRAL TRANSFORMATION. -------------------- 2 ELECTRON INTEGRALS -------------------- THE -PK- OPTION IS OFF, THE INTEGRALS ARE NOT IN SUPERMATRIX FORM. STORING 15000 INTEGRALS/RECORD ON DISK, USING 12 BYTES/INTEGRAL. TWO ELECTRON INTEGRAL EVALUATION REQUIRES 90474 WORDS OF MEMORY. II,JST,KST,LST = 1 1 1 1 NREC = 1 INTLOC = 1 II,JST,KST,LST = 2 1 1 1 NREC = 1 INTLOC = 2 II,JST,KST,LST = 3 1 1 1 NREC = 1 INTLOC = 7 II,JST,KST,LST = 4 1 1 1 NREC = 1 INTLOC = 22 II,JST,KST,LST = 5 1 1 1 NREC = 1 INTLOC = 67 II,JST,KST,LST = 6 1 1 1 NREC = 1 INTLOC = 214 II,JST,KST,LST = 7 1 1 1 NREC = 1 INTLOC = 1189 II,JST,KST,LST = 8 1 1 1 NREC = 1 INTLOC = 1867 II,JST,KST,LST = 9 1 1 1 NREC = 1 INTLOC = 2713 II,JST,KST,LST = 10 1 1 1 NREC = 1 INTLOC = 3757 II,JST,KST,LST = 11 1 1 1 NREC = 1 INTLOC = 7134 II,JST,KST,LST = 12 1 1 1 NREC = 1 INTLOC =12131 TOTAL NUMBER OF NONZERO TWO-ELECTRON INTEGRALS = 28697 2 INTEGRAL RECORDS WERE STORED ON DISK FILE 8. ...... END OF TWO-ELECTRON INTEGRALS ..... STEP CPU TIME = 0.06 TOTAL CPU TIME = 0.2 ( 0.0 MIN) TOTAL WALL CLOCK TIME= 0.2 SECONDS, CPU UTILIZATION IS 78.26% -------------------------------------------- PARTIAL TWO ELECTRON INTEGRAL TRANSFORMATION -------------------------------------------- NUMBER OF CORE MOLECULAR ORBITALS = 2 NUMBER OF OCCUPIED MOLECULAR ORBITALS = 28 TOTAL NUMBER OF MOLECULAR ORBITALS = 28 TOTAL NUMBER OF ATOMIC ORBITALS = 30 THRESHOLD FOR KEEPING TRANSFORMED 2E- INTEGRALS = 1.000E-09 AO INTEGRALS WILL BE READ IN FROM DISK... EVALUATING THE FROZEN CORE ENERGY... ----- FROZEN CORE ENERGY = -87.0270695792 PLAN A: REQUIREMENTS FOR FULLY IN-MEMORY TRANSFORMATION: # OF WORDS AVAILABLE = 1000000 # OF WORDS NEEDED = 427262 CHOOSING IN MEMORY PARTIAL TRANSFORMATION... TOTAL NUMBER OF TRANSFORMED 2E- INTEGRALS KEPT = 15152 ... END OF INTEGRAL TRANSFORMATION ... STEP CPU TIME = 0.02 TOTAL CPU TIME = 0.2 ( 0.0 MIN) TOTAL WALL CLOCK TIME= 0.2 SECONDS, CPU UTILIZATION IS 80.00% -------------------------------------------------------------------- OPEN-SHELL COUPLED-CLUSTER PROGRAM: M. WLOCH, J.R. GOUR, P. PIECUCH -------------------------------------------------------------------- *************************************************************** THE FOLLOWING PAPERS SHOULD BE CITED WHEN USING OPEN-SHELL CCSD AND/OR CR-CCL COUPLED-CLUSTER OPTIONS: P. PIECUCH AND M. WLOCH, J. CHEM. PHYS. 123, 224105/1-10 (2005). M. WLOCH, J.R. GOUR, AND P. PIECUCH, J. PHYS. CHEM. A, 111, 11359-11382 (2007). THE FOLLOWING PAPERS SHOULD BE CITED IF USING THE EA-EOMCC OR IP-EOMCC OPTIONS: J. R. GOUR, P. PIECUCH, AND M. WLOCH, J. CHEM. PHYS. 123, 134113/1-14 (2005). J. R. GOUR AND P. PIECUCH, J. CHEM. PHYS. 125, 234107/1-17 (2006). *************************************************************** ROHF REFERENCE STATE WILL BE USED, MULTIPLICITY= 2 ------------------------------ OPEN SHELL CC INPUT PARAMETERS ------------------------------ CC SPIN MULTIPLICITY (MULT IN $CCINP) = 2 IMPLYING NO. OF OCCUP. ALPHA = 5, PLUS 2 FROZEN CORES NO. OF OCCUP. BETA = 4, PLUS 2 FROZEN CORES NO. OF VIRT. ALPHA = 21 NO. OF VIRT. BETA = 22 MAX.NO. OF CCSD AND LAMBDA ITERS (MAXCC) = 50 CCSD AND LAMBDA CONVERGENCE (FROM ICONV) = 1.000E-07 CCSD EQUATION RESTART OPTION (KREST) = 0 CCSD DIIS MICROITERATIONS (KMICRO) = 6 LAMDA EQUATION RESTART OPTION (LREST) = 0 LAMBDA DIIS MICROITERATIONS (LMICRO) = 5 MM(2,3) CODE SELECTION (IOPMET) = 0 MEMORY NEEDED BY FOCK PREPARATION : 5274 WORDS MEMORY NEEDED BY INT. PASS 1 : 105128 WORDS MEMORY NEEDED BY INT. PASS 2 : 208525 WORDS MEMORY NEEDED BY INT. PASS 3,..., 8: 157705 WORDS PASS= 1, WILL PROCESS [OO|OO], [VO|OO], [VV|OO], AND [VO|VO] INTEGRALS. WROTE 625 WORDS OF INTS TO FILE 74 WROTE 256 WORDS OF INTS TO FILE 75 WROTE 400 WORDS OF INTS TO FILE 76 WROTE 2625 WORDS OF INTS TO FILE 77 WROTE 1408 WORDS OF INTS TO FILE 78 WROTE 1680 WORDS OF INTS TO FILE 79 WROTE 2200 WORDS OF INTS TO FILE 80 WROTE 11025 WORDS OF (VA OA VA OA) INTS TO FILE 81 WROTE 7744 WORDS OF (VB OB VB OB) INTS TO FILE 82 WROTE 9240 WORDS OF (VA OB VA OB) INTS TO FILE 83 WROTE 11025 WORDS OF INTS TO FILE 84 WROTE 7744 WORDS OF INTS TO FILE 85 WROTE 7056 WORDS OF INTS TO FILE 86 WROTE 12100 WORDS OF INTS TO FILE 87 PASS= 2, WILL PROCESS [VV|VO] INTEGRALS. WROTE 46305 WORDS OF INTS TO FILE 88 WROTE 42592 WORDS OF INTS TO FILE 89 WROTE 50820 WORDS OF INTS TO FILE 90 WROTE 38808 WORDS OF INTS TO FILE 91 PASSES 3 TO 8 WILL PROCESS [VV|VV] INTEGRALS. PASS= 3, DOING MN-MX ALPHA VIRTUAL= 6- 10, MN-MX BETA VIRTUAL= 5- 8 PASS= 4, DOING MN-MX ALPHA VIRTUAL= 11- 15, MN-MX BETA VIRTUAL= 9- 12 PASS= 5, DOING MN-MX ALPHA VIRTUAL= 16- 20, MN-MX BETA VIRTUAL= 13- 16 PASS= 6, DOING MN-MX ALPHA VIRTUAL= 21- 25, MN-MX BETA VIRTUAL= 17- 20 PASS= 7, DOING MN-MX ALPHA VIRTUAL= 26- 26, MN-MX BETA VIRTUAL= 21- 24 PASS= 8, DOING MN-MX ALPHA VIRTUAL= 0- 0, MN-MX BETA VIRTUAL= 25- 26 WROTE 194481 WORDS OF INTS TO FILE 92 WROTE 234256 WORDS OF INTS TO FILE 92 WROTE 213444 WORDS OF INTS TO FILE 92 ....... DONE WITH CC INTEGRAL PREPARATION ....... STEP CPU TIME = 0.03 TOTAL CPU TIME = 0.2 ( 0.0 MIN) TOTAL WALL CLOCK TIME= 0.5 SECONDS, CPU UTILIZATION IS 47.92% ----------------------- OPEN-SHELL CCSD PROGRAM ----------------------- MEMORY NEEDED BY CCSD : 284164 WORDS BEGINNING OPEN SHELL CCSD ITERATIONS ITERATION: 1 CCSD CORR E= -0.2592682057 CONV: 0.113492411 ITERATION: 2 CCSD CORR E= -0.2746419536 CONV: 0.045135049 ITERATION: 3 CCSD CORR E= -0.2741744820 CONV: 0.040262024 ITERATION: 4 CCSD CORR E= -0.2772803379 CONV: 0.020717200 ITERATION: 5 CCSD CORR E= -0.2775489622 CONV: 0.020794011 ITERATION: 6 CCSD CORR E= -0.2786267798 CONV: 0.013238070 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 6) ITERATION: 7 CCSD CORR E= -0.2804302896 CONV: 0.003850385 ITERATION: 8 CCSD CORR E= -0.2804743971 CONV: 0.002828748 ITERATION: 9 CCSD CORR E= -0.2805050655 CONV: 0.002202890 ITERATION: 10 CCSD CORR E= -0.2805277300 CONV: 0.001848811 ITERATION: 11 CCSD CORR E= -0.2805484119 CONV: 0.001517860 ITERATION: 12 CCSD CORR E= -0.2805652277 CONV: 0.001275706 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 6) ITERATION: 13 CCSD CORR E= -0.2806497871 CONV: 0.000238166 ITERATION: 14 CCSD CORR E= -0.2806666241 CONV: 0.000122198 ITERATION: 15 CCSD CORR E= -0.2806694126 CONV: 0.000101032 ITERATION: 16 CCSD CORR E= -0.2806746603 CONV: 0.000063130 ITERATION: 17 CCSD CORR E= -0.2806762565 CONV: 0.000053785 ITERATION: 18 CCSD CORR E= -0.2806784594 CONV: 0.000037867 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 6) ITERATION: 19 CCSD CORR E= -0.2806831257 CONV: 0.000010679 ITERATION: 20 CCSD CORR E= -0.2806832831 CONV: 0.000008070 ITERATION: 21 CCSD CORR E= -0.2806834207 CONV: 0.000006274 ITERATION: 22 CCSD CORR E= -0.2806834944 CONV: 0.000005292 ITERATION: 23 CCSD CORR E= -0.2806835669 CONV: 0.000004327 ITERATION: 24 CCSD CORR E= -0.2806836203 CONV: 0.000003644 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 6) ITERATION: 25 CCSD CORR E= -0.2806838883 CONV: 0.000000665 ITERATION: 26 CCSD CORR E= -0.2806839288 CONV: 0.000000363 ITERATION: 27 CCSD CORR E= -0.2806839381 CONV: 0.000000277 ITERATION: 28 CCSD CORR E= -0.2806839509 CONV: 0.000000179 ITERATION: 29 CCSD CORR E= -0.2806839556 CONV: 0.000000142 ITERATION: 30 CCSD CORR E= -0.2806839610 CONV: 0.000000100 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 6) ITERATION: 31 CCSD CORR E= -0.2806839725 CONV: 0.000000028 THE CCSD ITERATIONS HAVE CONVERGED CCSD CORRELATION ENERGY: -0.2806839725 THE LARGEST T1 AND T2 AMPLITUDES ARE T1= 0.0359373059 FOR IA -> AA = 5 8 T1= 0.0359373059 FOR IA -> AA = 6 9 T1= 0.2179078846 FOR IB -> AB = 4 7 T1= -0.0347994881 FOR IB -> AB = 5 8 T1= -0.0347994881 FOR IB -> AB = 6 9 T2= -0.0348920642 FOR IA,JA -> AA, BA = 5 6 8 9 T2= -0.0389142611 FOR IB,JB -> AB, BB = 4 5 7 8 T2= -0.0389142611 FOR IB,JB -> AB, BB = 4 6 7 9 T2= -0.0374085024 FOR IB,JB -> AB, BB = 5 6 8 9 T2= -0.0404789165 FOR IA,JB -> AA, BB = 4 4 8 8 T2= -0.0404789165 FOR IA,JB -> AA, BB = 4 4 9 9 T2= -0.0265836768 FOR IA,JB -> AA, BB = 4 4 15 7 T2= -0.0283095165 FOR IA,JB -> AA, BB = 4 4 15 15 T2= -0.0333165654 FOR IA,JB -> AA, BB = 4 5 8 7 T2= -0.0333165654 FOR IA,JB -> AA, BB = 4 6 9 7 T2= -0.0812704128 FOR IA,JB -> AA, BB = 5 4 8 7 T2= -0.1041286233 FOR IA,JB -> AA, BB = 5 5 8 8 T2= 0.0272924203 FOR IA,JB -> AA, BB = 5 5 8 16 T2= 0.0267873135 FOR IA,JB -> AA, BB = 5 5 16 8 T2= -0.0617164948 FOR IA,JB -> AA, BB = 5 6 8 9 T2= -0.0279195889 FOR IA,JB -> AA, BB = 5 6 9 8 T2= -0.0812704128 FOR IA,JB -> AA, BB = 6 4 9 7 T2= -0.0279195889 FOR IA,JB -> AA, BB = 6 5 8 9 T2= -0.0617164948 FOR IA,JB -> AA, BB = 6 5 9 8 T2= -0.1041286233 FOR IA,JB -> AA, BB = 6 6 9 9 T2= 0.0272924203 FOR IA,JB -> AA, BB = 6 6 9 17 T2= 0.0267873135 FOR IA,JB -> AA, BB = 6 6 17 9 T2= -0.0293368000 FOR IA,JB -> AA, BB = 7 4 8 8 T2= -0.0293368000 FOR IA,JB -> AA, BB = 7 4 9 9 T2= 0.0290924399 FOR IA,JB -> AA, BB = 7 4 11 7 T2= 0.0296530553 FOR IA,JB -> AA, BB = 7 4 15 7 T2= -0.0535570985 FOR IA,JB -> AA, BB = 7 5 8 7 T2= -0.0535570985 FOR IA,JB -> AA, BB = 7 6 9 7 SUMMARY OF CCSD RESULTS REFERENCE ENERGY: -92.1960778308 CCSD ENERGY: -92.4767618032 CORR. E= -0.2806839725 ....... DONE WITH CCSD AMPLITUDE ITERATIONS ....... STEP CPU TIME = 1.67 TOTAL CPU TIME = 1.9 ( 0.0 MIN) TOTAL WALL CLOCK TIME= 3.2 SECONDS, CPU UTILIZATION IS 59.01% ------------------------------------- OPEN-SHELL EQUATION-OF-MOTION PROGRAM ------------------------------------- MEMORY NEEDED BY ONEHBAR : 191538 WORDS MEMORY NEEDED BY TWOHBAR : 317513 WORDS ....... DONE WITH MATRIX ELEMENTS OF HBAR ....... STEP CPU TIME = 0.12 TOTAL CPU TIME = 2.0 ( 0.0 MIN) TOTAL WALL CLOCK TIME= 3.5 SECONDS, CPU UTILIZATION IS 58.55% MEMORY NEEDED BY OPENLEFT: 207218 WORDS BEGINNING LAMBDA VECTOR ITERATIONS ITERATION: 1 CONV: 0.068416336 ITERATION: 2 CONV: 0.019437061 ITERATION: 3 CONV: 0.013216128 ITERATION: 4 CONV: 0.006181713 ITERATION: 5 CONV: 0.005135543 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 5) ITERATION: 6 CONV: 0.002815866 ITERATION: 7 CONV: 0.001936998 ITERATION: 8 CONV: 0.001691137 ITERATION: 9 CONV: 0.001359967 ITERATION: 10 CONV: 0.001157770 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 5) ITERATION: 11 CONV: 0.000187607 ITERATION: 12 CONV: 0.000084473 ITERATION: 13 CONV: 0.000061842 ITERATION: 14 CONV: 0.000045031 ITERATION: 15 CONV: 0.000036594 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 5) ITERATION: 16 CONV: 0.000018511 ITERATION: 17 CONV: 0.000011209 ITERATION: 18 CONV: 0.000009948 ITERATION: 19 CONV: 0.000007605 ITERATION: 20 CONV: 0.000006562 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 5) ITERATION: 21 CONV: 0.000001971 ITERATION: 22 CONV: 0.000001140 ITERATION: 23 CONV: 0.000000847 ITERATION: 24 CONV: 0.000000653 ITERATION: 25 CONV: 0.000000532 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 5) ITERATION: 26 CONV: 0.000000256 ITERATION: 27 CONV: 0.000000161 ITERATION: 28 CONV: 0.000000144 ITERATION: 29 CONV: 0.000000109 ITERATION: 30 CONV: 0.000000094 LAMBDA VECTOR ITERATIONS HAVE CONVERGED, THE LARGEST LA1 AND LA2 AMPLITUDES ARE LA1= 0.1589550769 FOR IB -> AB = 4 7 LA1= -0.0514510443 FOR IB -> AB = 5 8 LA1= -0.0514510443 FOR IB -> AB = 6 9 LA2= -0.0273799053 FOR IA,JA -> AA, BA = 5 6 8 9 LA2= -0.0425445732 FOR IB,JB -> AB, BB = 4 5 7 8 LA2= -0.0425445732 FOR IB,JB -> AB, BB = 4 6 7 9 LA2= -0.0282391504 FOR IB,JB -> AB, BB = 5 6 8 9 LA2= -0.0354802697 FOR IA,JB -> AA, BB = 4 4 8 8 LA2= -0.0354802697 FOR IA,JB -> AA, BB = 4 4 9 9 LA2= -0.0262822437 FOR IA,JB -> AA, BB = 4 4 15 7 LA2= -0.0267341271 FOR IA,JB -> AA, BB = 4 4 15 15 LA2= -0.0279145342 FOR IA,JB -> AA, BB = 4 5 8 7 LA2= -0.0279145342 FOR IA,JB -> AA, BB = 4 6 9 7 LA2= -0.0711234613 FOR IA,JB -> AA, BB = 5 4 8 7 LA2= -0.0975442537 FOR IA,JB -> AA, BB = 5 5 8 8 LA2= 0.0262997076 FOR IA,JB -> AA, BB = 5 5 8 16 LA2= 0.0253217229 FOR IA,JB -> AA, BB = 5 5 16 8 LA2= -0.0562001126 FOR IA,JB -> AA, BB = 5 6 8 9 LA2= -0.0273649346 FOR IA,JB -> AA, BB = 5 6 9 8 LA2= -0.0711234613 FOR IA,JB -> AA, BB = 6 4 9 7 LA2= -0.0273649346 FOR IA,JB -> AA, BB = 6 5 8 9 LA2= -0.0562001126 FOR IA,JB -> AA, BB = 6 5 9 8 LA2= -0.0975442537 FOR IA,JB -> AA, BB = 6 6 9 9 LA2= 0.0262997076 FOR IA,JB -> AA, BB = 6 6 9 17 LA2= 0.0253217229 FOR IA,JB -> AA, BB = 6 6 17 9 LA2= -0.0257127072 FOR IA,JB -> AA, BB = 7 4 8 8 LA2= -0.0257127072 FOR IA,JB -> AA, BB = 7 4 9 9 LA2= 0.0274534678 FOR IA,JB -> AA, BB = 7 4 11 7 LA2= 0.0270827268 FOR IA,JB -> AA, BB = 7 4 15 7 LA2= -0.0486996827 FOR IA,JB -> AA, BB = 7 5 8 7 LA2= -0.0486996827 FOR IA,JB -> AA, BB = 7 6 9 7 ....... DONE WITH LAMBDA AMPLITUDE ITERATIONS ....... STEP CPU TIME = 1.08 TOTAL CPU TIME = 3.1 ( 0.1 MIN) TOTAL WALL CLOCK TIME= 10.5 SECONDS, CPU UTILIZATION IS 29.47% ----------------------------- OPEN-SHELL CR-CC(2,3) PROGRAM ----------------------------- AVAILABLE MEMORY : 999948 WORDS MEMORY NEEDED BY MM(2,3) : 504814 WORDS, CODE=HIGH MEMORY VERSION (1) CHOOSING THE -HIGH MEMORY VERSION- FOR OPEN SHELL MM(2,3) MAIN RESULTS: CR-CC(2,3) = CR-CC(2,3),D = CR-CCSD(T)_L CALCULATIONS GROUND STATE CR-CC(2,3),A CORRECTION -0.012665, TOTAL E= -92.4894269043 GROUND STATE CR-CC(2,3),B CORRECTION -0.011786, TOTAL E= -92.4885482696 GROUND STATE CR-CC(2,3),C CORRECTION -0.016415, TOTAL E= -92.4931768613 GROUND STATE CR-CC(2,3),D CORRECTION -0.016255, TOTAL E= -92.4930167395 CR-CC(2,3),A ENERGY IS IDENTICAL TO THE CCSD(2)_T ENERGY. CR-CC(2,3),D ENERGY IS IDENTICAL TO COMPLETE CR-CC(2,3) ENERGY (CR-CCSD(T)_L) SUMMARY OF CR-CC(2,3) OR CR-CCSD(T)_L CALCULATIONS CCSD E= -92.4767618032 CORR. E= -0.2806839725 CR-CC(2,3),A OR CCSD(2)_T E= -92.4894269043 CORR. E= -0.2933490736 CR-CC(2,3) OR CR-CCSD(T)_L E= -92.4930167395 CORR. E= -0.2969389087 THE MOST ACCURATE ENERGETICS IS PROVIDED BY CR-CC(2,3) = CR-CC(2,3),D ..... DONE WITH CC NON-ITERATIVE TRIPLES CORRECTIONS ..... STEP CPU TIME = 0.17 TOTAL CPU TIME = 3.3 ( 0.1 MIN) TOTAL WALL CLOCK TIME= 10.7 SECONDS, CPU UTILIZATION IS 30.56% THE DERIVATIVE COMPUTATION WILL BE DONE WITH THE TYPE -A- CR-CC(2,3) ENERGY, WHICH IS INVARIANT TO ROTATIONS OF THE ORBITALS. COMPUTING THE NUCLEAR GRADIENT BY NUMERIC DIFFERENTIATION PROJECTION FINDS 1 TOTALLY SYMMETRIC MODES OUT OF 3N= 6 SO 2 SINGLE POINT ENERGIES MUST BE COMPUTED TO GET A GRADIENT. DDI: Creating Array [0] - 2 x 2 = 4 words. 1 2 1 0.0000000 0.0000000 2 0.0000000 0.0000000 3 -0.0070711 2.2214520 WORKING ON IMODE= 1 IVIB=1... COORDINATES OF ALL ATOMS ARE (ANGS) ATOM CHARGE X Y Z ------------------------------------------------------------ C 6.0 0.0000000000 0.0000000000 -0.0037418482 N 7.0 0.0000000000 0.0000000000 1.1755418482 ...... END OF ONE-ELECTRON INTEGRALS ...... STEP CPU TIME = 0.00 TOTAL CPU TIME = 3.3 ( 0.1 MIN) TOTAL WALL CLOCK TIME= 11.1 SECONDS, CPU UTILIZATION IS 29.51% TOTAL NUMBER OF NONZERO TWO-ELECTRON INTEGRALS = 28697 2 INTEGRAL RECORDS WERE STORED ON DISK FILE 8. ...... END OF TWO-ELECTRON INTEGRALS ..... STEP CPU TIME = 0.06 TOTAL CPU TIME = 3.3 ( 0.1 MIN) TOTAL WALL CLOCK TIME= 11.1 SECONDS, CPU UTILIZATION IS 29.89% --------------------------- ROHF SCF CALCULATION --------------------------- DENSITY MATRIX CONV= 1.00E-06 ITER EX TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR * * * INITIATING DIIS PROCEDURE * * * 1 0 -92.1947503371 -92.1947503371 0.003901326 0.004102420 2 1 -92.1947850448 -0.0000347077 0.001377731 0.001533248 3 2 -92.1947892260 -0.0000041811 0.001260940 0.000931714 4 3 -92.1947918603 -0.0000026343 0.000357029 0.000529727 5 4 -92.1947923791 -0.0000005188 0.000176854 0.000072974 6 5 -92.1947924128 -0.0000000337 0.000027016 0.000014424 7 6 -92.1947924134 -0.0000000006 0.000001633 0.000000754 8 7 -92.1947924134 0.0000000000 0.000000192 0.000000155 ROHF HAS CONVERGED, NOW COMPUTING EXACT ALPHA,BETA FOCK MATRICES FOR USE DURING THE COUPLED CLUSTER CALCULATION THAT FOLLOWS. ----------------- DENSITY CONVERGED ----------------- TIME TO FORM FOCK OPERATORS= 0.0 SECONDS ( 0.0 SEC/ITER) TIME TO SOLVE SCF EQUATIONS= 0.0 SECONDS ( 0.0 SEC/ITER) FINAL ROHF ENERGY IS -92.1947924134 AFTER 8 ITERATIONS -------------------- SPIN SZ = 0.500 S-SQUARED = 0.750 -------------------- LZ VALUE ANALYSIS FOR THE MOS ---------------------------------------- MO 1 ( 1) HAS LZ(WEIGHT)= 0.00(100.0%) MO 2 ( 2) HAS LZ(WEIGHT)= 0.00(100.0%) MO 3 ( 3) HAS LZ(WEIGHT)= 0.00(100.0%) MO 4 ( 4) HAS LZ(WEIGHT)= 0.00(100.0%) MO 5 ( 5) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 6 ( 5) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 7 ( 6) HAS LZ(WEIGHT)= 0.00(100.0%) MO 8 ( 7) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 9 ( 7) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 10 ( 8) HAS LZ(WEIGHT)= 0.00(100.0%) MO 11 ( 9) HAS LZ(WEIGHT)= 0.00(100.0%) MO 12 ( 10) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 13 ( 10) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 14 ( 11) HAS LZ(WEIGHT)= 0.00(100.0%) MO 15 ( 12) HAS LZ(WEIGHT)= 0.00(100.0%) MO 16 ( 13) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 17 ( 13) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 18 ( 14) HAS LZ(WEIGHT)=-2.00( 50.0%) 2.00( 50.0%) MO 19 ( 14) HAS LZ(WEIGHT)=-2.00( 50.0%) 2.00( 50.0%) MO 20 ( 15) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 21 ( 15) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 22 ( 16) HAS LZ(WEIGHT)= 0.00(100.0%) MO 23 ( 17) HAS LZ(WEIGHT)=-2.00( 50.0%) 2.00( 50.0%) MO 24 ( 17) HAS LZ(WEIGHT)=-2.00( 50.0%) 2.00( 50.0%) MO 25 ( 18) HAS LZ(WEIGHT)= 0.00(100.0%) MO 26 ( 19) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 27 ( 19) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 28 ( 20) HAS LZ(WEIGHT)= 0.00(100.0%) ...... END OF ROHF CALCULATION ...... STEP CPU TIME = 0.02 TOTAL CPU TIME = 3.3 ( 0.1 MIN) TOTAL WALL CLOCK TIME= 11.2 SECONDS, CPU UTILIZATION IS 29.96% --------------------------- COUPLED CLUSTER CALCULATION --------------------------- CCTYP =CR-CCL TOTAL NUMBER OF MOS = 28 NUMBER OF OCCUPIED MOS = 7 NUMBER OF FROZEN CORE MOS = 2 NUMBER OF FROZEN VIRTUAL MOS = 0 MAXIMUM CC ITERATIONS = 50 MAXIMUM DIIS ITERATIONS = -1 CONVERGENCE CRITERION FOR CC = 7 AMPLITUDE ACCURACY THRESHOLD = 0.0E+00 REGENERATING AO INTEGRAL LIST W/O SYMMETRY FOR THE INTEGRAL TRANSFORMATION. TOTAL NUMBER OF NONZERO TWO-ELECTRON INTEGRALS = 28697 2 INTEGRAL RECORDS WERE STORED ON DISK FILE 8. ...... END OF TWO-ELECTRON INTEGRALS ..... STEP CPU TIME = 0.06 TOTAL CPU TIME = 3.4 ( 0.1 MIN) TOTAL WALL CLOCK TIME= 11.2 SECONDS, CPU UTILIZATION IS 30.34% -------------------------------------------- PARTIAL TWO ELECTRON INTEGRAL TRANSFORMATION -------------------------------------------- NUMBER OF CORE MOLECULAR ORBITALS = 2 NUMBER OF OCCUPIED MOLECULAR ORBITALS = 28 TOTAL NUMBER OF MOLECULAR ORBITALS = 28 TOTAL NUMBER OF ATOMIC ORBITALS = 30 THRESHOLD FOR KEEPING TRANSFORMED 2E- INTEGRALS = 1.000E-09 AO INTEGRALS WILL BE READ IN FROM DISK... EVALUATING THE FROZEN CORE ENERGY... ----- FROZEN CORE ENERGY = -86.9640314464 PLAN A: REQUIREMENTS FOR FULLY IN-MEMORY TRANSFORMATION: # OF WORDS AVAILABLE = 992982 # OF WORDS NEEDED = 427262 CHOOSING IN MEMORY PARTIAL TRANSFORMATION... TOTAL NUMBER OF TRANSFORMED 2E- INTEGRALS KEPT = 15152 ... END OF INTEGRAL TRANSFORMATION ... STEP CPU TIME = 0.02 TOTAL CPU TIME = 3.4 ( 0.1 MIN) TOTAL WALL CLOCK TIME= 12.0 SECONDS, CPU UTILIZATION IS 28.63% -------------------------------------------------------------------- OPEN-SHELL COUPLED-CLUSTER PROGRAM: M. WLOCH, J.R. GOUR, P. PIECUCH -------------------------------------------------------------------- *************************************************************** THE FOLLOWING PAPERS SHOULD BE CITED WHEN USING OPEN-SHELL CCSD AND/OR CR-CCL COUPLED-CLUSTER OPTIONS: P. PIECUCH AND M. WLOCH, J. CHEM. PHYS. 123, 224105/1-10 (2005). M. WLOCH, J.R. GOUR, AND P. PIECUCH, J. PHYS. CHEM. A, 111, 11359-11382 (2007). THE FOLLOWING PAPERS SHOULD BE CITED IF USING THE EA-EOMCC OR IP-EOMCC OPTIONS: J. R. GOUR, P. PIECUCH, AND M. WLOCH, J. CHEM. PHYS. 123, 134113/1-14 (2005). J. R. GOUR AND P. PIECUCH, J. CHEM. PHYS. 125, 234107/1-17 (2006). *************************************************************** ROHF REFERENCE STATE WILL BE USED, MULTIPLICITY= 2 ------------------------------ OPEN SHELL CC INPUT PARAMETERS ------------------------------ CC SPIN MULTIPLICITY (MULT IN $CCINP) = 2 IMPLYING NO. OF OCCUP. ALPHA = 5, PLUS 2 FROZEN CORES NO. OF OCCUP. BETA = 4, PLUS 2 FROZEN CORES NO. OF VIRT. ALPHA = 21 NO. OF VIRT. BETA = 22 MAX.NO. OF CCSD AND LAMBDA ITERS (MAXCC) = 50 CCSD AND LAMBDA CONVERGENCE (FROM ICONV) = 1.000E-07 CCSD EQUATION RESTART OPTION (KREST) = 0 CCSD DIIS MICROITERATIONS (KMICRO) = 6 LAMDA EQUATION RESTART OPTION (LREST) = 0 LAMBDA DIIS MICROITERATIONS (LMICRO) = 5 MM(2,3) CODE SELECTION (IOPMET) = 0 MEMORY NEEDED BY FOCK PREPARATION : 5274 WORDS MEMORY NEEDED BY INT. PASS 1 : 105128 WORDS MEMORY NEEDED BY INT. PASS 2 : 208525 WORDS MEMORY NEEDED BY INT. PASS 3,..., 8: 157705 WORDS PASS= 1, WILL PROCESS [OO|OO], [VO|OO], [VV|OO], AND [VO|VO] INTEGRALS. WROTE 625 WORDS OF INTS TO FILE 74 WROTE 256 WORDS OF INTS TO FILE 75 WROTE 400 WORDS OF INTS TO FILE 76 WROTE 2625 WORDS OF INTS TO FILE 77 WROTE 1408 WORDS OF INTS TO FILE 78 WROTE 1680 WORDS OF INTS TO FILE 79 WROTE 2200 WORDS OF INTS TO FILE 80 WROTE 11025 WORDS OF (VA OA VA OA) INTS TO FILE 81 WROTE 7744 WORDS OF (VB OB VB OB) INTS TO FILE 82 WROTE 9240 WORDS OF (VA OB VA OB) INTS TO FILE 83 WROTE 11025 WORDS OF INTS TO FILE 84 WROTE 7744 WORDS OF INTS TO FILE 85 WROTE 7056 WORDS OF INTS TO FILE 86 WROTE 12100 WORDS OF INTS TO FILE 87 PASS= 2, WILL PROCESS [VV|VO] INTEGRALS. WROTE 46305 WORDS OF INTS TO FILE 88 WROTE 42592 WORDS OF INTS TO FILE 89 WROTE 50820 WORDS OF INTS TO FILE 90 WROTE 38808 WORDS OF INTS TO FILE 91 PASSES 3 TO 8 WILL PROCESS [VV|VV] INTEGRALS. PASS= 3, DOING MN-MX ALPHA VIRTUAL= 6- 10, MN-MX BETA VIRTUAL= 5- 8 PASS= 4, DOING MN-MX ALPHA VIRTUAL= 11- 15, MN-MX BETA VIRTUAL= 9- 12 PASS= 5, DOING MN-MX ALPHA VIRTUAL= 16- 20, MN-MX BETA VIRTUAL= 13- 16 PASS= 6, DOING MN-MX ALPHA VIRTUAL= 21- 25, MN-MX BETA VIRTUAL= 17- 20 PASS= 7, DOING MN-MX ALPHA VIRTUAL= 26- 26, MN-MX BETA VIRTUAL= 21- 24 PASS= 8, DOING MN-MX ALPHA VIRTUAL= 0- 0, MN-MX BETA VIRTUAL= 25- 26 WROTE 194481 WORDS OF INTS TO FILE 92 WROTE 234256 WORDS OF INTS TO FILE 92 WROTE 213444 WORDS OF INTS TO FILE 92 ....... DONE WITH CC INTEGRAL PREPARATION ....... STEP CPU TIME = 0.02 TOTAL CPU TIME = 3.5 ( 0.1 MIN) TOTAL WALL CLOCK TIME= 12.3 SECONDS, CPU UTILIZATION IS 28.00% ----------------------- OPEN-SHELL CCSD PROGRAM ----------------------- MEMORY NEEDED BY CCSD : 284164 WORDS BEGINNING OPEN SHELL CCSD ITERATIONS ITERATION: 1 CCSD CORR E= -0.2604194243 CONV: 0.115622797 ITERATION: 2 CCSD CORR E= -0.2763205889 CONV: 0.046057114 ITERATION: 3 CCSD CORR E= -0.2756645800 CONV: 0.040900282 ITERATION: 4 CCSD CORR E= -0.2788964329 CONV: 0.020852136 ITERATION: 5 CCSD CORR E= -0.2791182220 CONV: 0.020946083 ITERATION: 6 CCSD CORR E= -0.2802338759 CONV: 0.013171339 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 6) ITERATION: 7 CCSD CORR E= -0.2820172866 CONV: 0.003850110 ITERATION: 8 CCSD CORR E= -0.2820604433 CONV: 0.002846994 ITERATION: 9 CCSD CORR E= -0.2820921080 CONV: 0.002213084 ITERATION: 10 CCSD CORR E= -0.2821145427 CONV: 0.001859238 ITERATION: 11 CCSD CORR E= -0.2821355134 CONV: 0.001523850 ITERATION: 12 CCSD CORR E= -0.2821522352 CONV: 0.001280375 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 6) ITERATION: 13 CCSD CORR E= -0.2822361949 CONV: 0.000236218 ITERATION: 14 CCSD CORR E= -0.2822527835 CONV: 0.000123620 ITERATION: 15 CCSD CORR E= -0.2822556663 CONV: 0.000100527 ITERATION: 16 CCSD CORR E= -0.2822608817 CONV: 0.000063286 ITERATION: 17 CCSD CORR E= -0.2822624947 CONV: 0.000053127 ITERATION: 18 CCSD CORR E= -0.2822646820 CONV: 0.000037335 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 6) ITERATION: 19 CCSD CORR E= -0.2822692198 CONV: 0.000010468 ITERATION: 20 CCSD CORR E= -0.2822693766 CONV: 0.000007936 ITERATION: 21 CCSD CORR E= -0.2822695156 CONV: 0.000006161 ITERATION: 22 CCSD CORR E= -0.2822695880 CONV: 0.000005200 ITERATION: 23 CCSD CORR E= -0.2822696601 CONV: 0.000004246 ITERATION: 24 CCSD CORR E= -0.2822697125 CONV: 0.000003574 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 6) ITERATION: 25 CCSD CORR E= -0.2822699735 CONV: 0.000000645 ITERATION: 26 CCSD CORR E= -0.2822700124 CONV: 0.000000358 ITERATION: 27 CCSD CORR E= -0.2822700213 CONV: 0.000000271 ITERATION: 28 CCSD CORR E= -0.2822700338 CONV: 0.000000176 ITERATION: 29 CCSD CORR E= -0.2822700382 CONV: 0.000000139 ITERATION: 30 CCSD CORR E= -0.2822700435 CONV: 0.000000098 THE CCSD ITERATIONS HAVE CONVERGED CCSD CORRELATION ENERGY: -0.2822700435 THE LARGEST T1 AND T2 AMPLITUDES ARE T1= 0.0361433397 FOR IA -> AA = 5 8 T1= 0.0361433397 FOR IA -> AA = 6 9 T1= -0.2176577337 FOR IB -> AB = 4 7 T1= -0.0347137314 FOR IB -> AB = 5 8 T1= -0.0347137314 FOR IB -> AB = 6 9 T2= -0.0349381481 FOR IA,JA -> AA, BA = 5 6 8 9 T2= 0.0391964554 FOR IB,JB -> AB, BB = 4 5 7 8 T2= 0.0391964554 FOR IB,JB -> AB, BB = 4 6 7 9 T2= -0.0376142068 FOR IB,JB -> AB, BB = 5 6 8 9 T2= -0.0408109415 FOR IA,JB -> AA, BB = 4 4 8 8 T2= -0.0408109415 FOR IA,JB -> AA, BB = 4 4 9 9 T2= 0.0268957119 FOR IA,JB -> AA, BB = 4 4 15 7 T2= -0.0289019889 FOR IA,JB -> AA, BB = 4 4 15 15 T2= 0.0338602290 FOR IA,JB -> AA, BB = 4 5 8 7 T2= 0.0338602290 FOR IA,JB -> AA, BB = 4 6 9 7 T2= 0.0820811789 FOR IA,JB -> AA, BB = 5 4 8 7 T2= -0.0250248663 FOR IA,JB -> AA, BB = 5 4 8 15 T2= -0.1054973530 FOR IA,JB -> AA, BB = 5 5 8 8 T2= 0.0273335339 FOR IA,JB -> AA, BB = 5 5 8 16 T2= 0.0268302048 FOR IA,JB -> AA, BB = 5 5 16 8 T2= -0.0623606539 FOR IA,JB -> AA, BB = 5 6 8 9 T2= -0.0284255790 FOR IA,JB -> AA, BB = 5 6 9 8 T2= 0.0820811789 FOR IA,JB -> AA, BB = 6 4 9 7 T2= -0.0250248663 FOR IA,JB -> AA, BB = 6 4 9 15 T2= -0.0284255790 FOR IA,JB -> AA, BB = 6 5 8 9 T2= -0.0623606539 FOR IA,JB -> AA, BB = 6 5 9 8 T2= -0.1054973530 FOR IA,JB -> AA, BB = 6 6 9 9 T2= 0.0273335339 FOR IA,JB -> AA, BB = 6 6 9 17 T2= 0.0268302048 FOR IA,JB -> AA, BB = 6 6 17 9 T2= 0.0295305986 FOR IA,JB -> AA, BB = 7 4 8 8 T2= 0.0295305986 FOR IA,JB -> AA, BB = 7 4 9 9 T2= 0.0295167411 FOR IA,JB -> AA, BB = 7 4 11 7 T2= 0.0301373295 FOR IA,JB -> AA, BB = 7 4 15 7 T2= -0.0533660380 FOR IA,JB -> AA, BB = 7 5 8 7 T2= -0.0533660380 FOR IA,JB -> AA, BB = 7 6 9 7 SUMMARY OF CCSD RESULTS REFERENCE ENERGY: -92.1947924134 CCSD ENERGY: -92.4770624569 CORR. E= -0.2822700435 ....... DONE WITH CCSD AMPLITUDE ITERATIONS ....... STEP CPU TIME = 1.66 TOTAL CPU TIME = 5.1 ( 0.1 MIN) TOTAL WALL CLOCK TIME= 15.0 SECONDS, CPU UTILIZATION IS 33.98% ------------------------------------- OPEN-SHELL EQUATION-OF-MOTION PROGRAM ------------------------------------- MEMORY NEEDED BY ONEHBAR : 191538 WORDS MEMORY NEEDED BY TWOHBAR : 317513 WORDS ....... DONE WITH MATRIX ELEMENTS OF HBAR ....... STEP CPU TIME = 0.12 TOTAL CPU TIME = 5.2 ( 0.1 MIN) TOTAL WALL CLOCK TIME= 15.2 SECONDS, CPU UTILIZATION IS 34.50% MEMORY NEEDED BY OPENLEFT: 207218 WORDS BEGINNING LAMBDA VECTOR ITERATIONS ITERATION: 1 CONV: 0.069373142 ITERATION: 2 CONV: 0.019837143 ITERATION: 3 CONV: 0.013469239 ITERATION: 4 CONV: 0.006321687 ITERATION: 5 CONV: 0.005202859 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 5) ITERATION: 6 CONV: 0.002817216 ITERATION: 7 CONV: 0.001938648 ITERATION: 8 CONV: 0.001689412 ITERATION: 9 CONV: 0.001357503 ITERATION: 10 CONV: 0.001154128 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 5) ITERATION: 11 CONV: 0.000188973 ITERATION: 12 CONV: 0.000086158 ITERATION: 13 CONV: 0.000063032 ITERATION: 14 CONV: 0.000045824 ITERATION: 15 CONV: 0.000037133 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 5) ITERATION: 16 CONV: 0.000018632 ITERATION: 17 CONV: 0.000011327 ITERATION: 18 CONV: 0.000010009 ITERATION: 19 CONV: 0.000007651 ITERATION: 20 CONV: 0.000006582 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 5) ITERATION: 21 CONV: 0.000002007 ITERATION: 22 CONV: 0.000001181 ITERATION: 23 CONV: 0.000000878 ITERATION: 24 CONV: 0.000000675 ITERATION: 25 CONV: 0.000000548 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 5) ITERATION: 26 CONV: 0.000000258 ITERATION: 27 CONV: 0.000000163 ITERATION: 28 CONV: 0.000000145 ITERATION: 29 CONV: 0.000000110 ITERATION: 30 CONV: 0.000000095 LAMBDA VECTOR ITERATIONS HAVE CONVERGED, THE LARGEST LA1 AND LA2 AMPLITUDES ARE LA1= -0.1585239709 FOR IB -> AB = 4 7 LA1= -0.0516632546 FOR IB -> AB = 5 8 LA1= -0.0516632546 FOR IB -> AB = 6 9 LA2= -0.0273182250 FOR IA,JA -> AA, BA = 5 6 8 9 LA2= 0.0427391992 FOR IB,JB -> AB, BB = 4 5 7 8 LA2= 0.0427391992 FOR IB,JB -> AB, BB = 4 6 7 9 LA2= -0.0282714978 FOR IB,JB -> AB, BB = 5 6 8 9 LA2= -0.0357365637 FOR IA,JB -> AA, BB = 4 4 8 8 LA2= -0.0357365637 FOR IA,JB -> AA, BB = 4 4 9 9 LA2= 0.0266640504 FOR IA,JB -> AA, BB = 4 4 15 7 LA2= -0.0273101778 FOR IA,JB -> AA, BB = 4 4 15 15 LA2= 0.0283680951 FOR IA,JB -> AA, BB = 4 5 8 7 LA2= 0.0283680951 FOR IA,JB -> AA, BB = 4 6 9 7 LA2= 0.0718400330 FOR IA,JB -> AA, BB = 5 4 8 7 LA2= -0.0988042731 FOR IA,JB -> AA, BB = 5 5 8 8 LA2= 0.0263509323 FOR IA,JB -> AA, BB = 5 5 8 16 LA2= 0.0253590265 FOR IA,JB -> AA, BB = 5 5 16 8 LA2= -0.0567369437 FOR IA,JB -> AA, BB = 5 6 8 9 LA2= -0.0278826947 FOR IA,JB -> AA, BB = 5 6 9 8 LA2= 0.0718400330 FOR IA,JB -> AA, BB = 6 4 9 7 LA2= -0.0278826947 FOR IA,JB -> AA, BB = 6 5 8 9 LA2= -0.0567369437 FOR IA,JB -> AA, BB = 6 5 9 8 LA2= -0.0988042731 FOR IA,JB -> AA, BB = 6 6 9 9 LA2= 0.0263509323 FOR IA,JB -> AA, BB = 6 6 9 17 LA2= 0.0253590265 FOR IA,JB -> AA, BB = 6 6 17 9 LA2= 0.0258781456 FOR IA,JB -> AA, BB = 7 4 8 8 LA2= 0.0258781456 FOR IA,JB -> AA, BB = 7 4 9 9 LA2= 0.0278612840 FOR IA,JB -> AA, BB = 7 4 11 7 LA2= 0.0275288068 FOR IA,JB -> AA, BB = 7 4 15 7 LA2= -0.0485302924 FOR IA,JB -> AA, BB = 7 5 8 7 LA2= -0.0485302924 FOR IA,JB -> AA, BB = 7 6 9 7 ....... DONE WITH LAMBDA AMPLITUDE ITERATIONS ....... STEP CPU TIME = 1.08 TOTAL CPU TIME = 6.3 ( 0.1 MIN) TOTAL WALL CLOCK TIME= 16.8 SECONDS, CPU UTILIZATION IS 37.56% ----------------------------- OPEN-SHELL CR-CC(2,3) PROGRAM ----------------------------- AVAILABLE MEMORY : 992930 WORDS MEMORY NEEDED BY MM(2,3) : 504814 WORDS, CODE=HIGH MEMORY VERSION (1) CHOOSING THE -HIGH MEMORY VERSION- FOR OPEN SHELL MM(2,3) MAIN RESULTS: CR-CC(2,3) = CR-CC(2,3),D = CR-CCSD(T)_L CALCULATIONS GROUND STATE CR-CC(2,3),A CORRECTION -0.012897, TOTAL E= -92.4899598972 GROUND STATE CR-CC(2,3),B CORRECTION -0.011991, TOTAL E= -92.4890532882 GROUND STATE CR-CC(2,3),C CORRECTION -0.016731, TOTAL E= -92.4937930280 GROUND STATE CR-CC(2,3),D CORRECTION -0.016562, TOTAL E= -92.4936246801 CR-CC(2,3),A ENERGY IS IDENTICAL TO THE CCSD(2)_T ENERGY. CR-CC(2,3),D ENERGY IS IDENTICAL TO COMPLETE CR-CC(2,3) ENERGY (CR-CCSD(T)_L) SUMMARY OF CR-CC(2,3) OR CR-CCSD(T)_L CALCULATIONS CCSD E= -92.4770624569 CORR. E= -0.2822700435 CR-CC(2,3),A OR CCSD(2)_T E= -92.4899598972 CORR. E= -0.2951674838 CR-CC(2,3) OR CR-CCSD(T)_L E= -92.4936246801 CORR. E= -0.2988322667 THE MOST ACCURATE ENERGETICS IS PROVIDED BY CR-CC(2,3) = CR-CC(2,3),D ..... DONE WITH CC NON-ITERATIVE TRIPLES CORRECTIONS ..... STEP CPU TIME = 0.16 TOTAL CPU TIME = 6.5 ( 0.1 MIN) TOTAL WALL CLOCK TIME= 17.0 SECONDS, CPU UTILIZATION IS 38.13% THE DERIVATIVE COMPUTATION WILL BE DONE WITH THE TYPE -A- CR-CC(2,3) ENERGY, WHICH IS INVARIANT TO ROTATIONS OF THE ORBITALS. IMODE= 1 IVIB= 1 E= -92.4899598972 1 2 1 0.0000000 0.0000000 2 0.0000000 0.0000000 3 0.0070711 2.2073098 WORKING ON IMODE= 1 IVIB=2... COORDINATES OF ALL ATOMS ARE (ANGS) ATOM CHARGE X Y Z ------------------------------------------------------------ C 6.0 0.0000000000 0.0000000000 0.0037418482 N 7.0 0.0000000000 0.0000000000 1.1680581518 ...... END OF ONE-ELECTRON INTEGRALS ...... STEP CPU TIME = 0.01 TOTAL CPU TIME = 6.5 ( 0.1 MIN) TOTAL WALL CLOCK TIME= 17.0 SECONDS, CPU UTILIZATION IS 38.19% TOTAL NUMBER OF NONZERO TWO-ELECTRON INTEGRALS = 28697 2 INTEGRAL RECORDS WERE STORED ON DISK FILE 8. ...... END OF TWO-ELECTRON INTEGRALS ..... STEP CPU TIME = 0.05 TOTAL CPU TIME = 6.5 ( 0.1 MIN) TOTAL WALL CLOCK TIME= 17.0 SECONDS, CPU UTILIZATION IS 38.34% --------------------------- ROHF SCF CALCULATION --------------------------- DENSITY MATRIX CONV= 1.00E-06 ITER EX TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR * * * INITIATING DIIS PROCEDURE * * * 1 0 -92.1970825854 -92.1970825854 0.003921328 0.004156898 2 1 -92.1971178503 -0.0000352649 0.001370008 0.001549785 3 2 -92.1971221763 -0.0000043260 0.001244935 0.000897360 4 3 -92.1971246440 -0.0000024677 0.000345075 0.000509782 5 4 -92.1971251193 -0.0000004753 0.000160133 0.000066547 6 5 -92.1971251463 -0.0000000270 0.000024273 0.000013309 7 6 -92.1971251468 -0.0000000005 0.000001730 0.000000706 8 7 -92.1971251468 0.0000000000 0.000000178 0.000000162 ROHF HAS CONVERGED, NOW COMPUTING EXACT ALPHA,BETA FOCK MATRICES FOR USE DURING THE COUPLED CLUSTER CALCULATION THAT FOLLOWS. ----------------- DENSITY CONVERGED ----------------- TIME TO FORM FOCK OPERATORS= 0.0 SECONDS ( 0.0 SEC/ITER) TIME TO SOLVE SCF EQUATIONS= 0.0 SECONDS ( 0.0 SEC/ITER) FINAL ROHF ENERGY IS -92.1971251468 AFTER 8 ITERATIONS -------------------- SPIN SZ = 0.500 S-SQUARED = 0.750 -------------------- LZ VALUE ANALYSIS FOR THE MOS ---------------------------------------- MO 1 ( 1) HAS LZ(WEIGHT)= 0.00(100.0%) MO 2 ( 2) HAS LZ(WEIGHT)= 0.00(100.0%) MO 3 ( 3) HAS LZ(WEIGHT)= 0.00(100.0%) MO 4 ( 4) HAS LZ(WEIGHT)= 0.00(100.0%) MO 5 ( 5) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 6 ( 5) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 7 ( 6) HAS LZ(WEIGHT)= 0.00(100.0%) MO 8 ( 7) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 9 ( 7) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 10 ( 8) HAS LZ(WEIGHT)= 0.00(100.0%) MO 11 ( 9) HAS LZ(WEIGHT)= 0.00(100.0%) MO 12 ( 10) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 13 ( 10) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 14 ( 11) HAS LZ(WEIGHT)= 0.00(100.0%) MO 15 ( 12) HAS LZ(WEIGHT)= 0.00(100.0%) MO 16 ( 13) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 17 ( 13) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 18 ( 14) HAS LZ(WEIGHT)=-2.00( 50.0%) 2.00( 50.0%) MO 19 ( 14) HAS LZ(WEIGHT)=-2.00( 50.0%) 2.00( 50.0%) MO 20 ( 15) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 21 ( 15) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 22 ( 16) HAS LZ(WEIGHT)= 0.00(100.0%) MO 23 ( 17) HAS LZ(WEIGHT)=-2.00( 50.0%) 2.00( 50.0%) MO 24 ( 17) HAS LZ(WEIGHT)=-2.00( 50.0%) 2.00( 50.0%) MO 25 ( 18) HAS LZ(WEIGHT)= 0.00(100.0%) MO 26 ( 19) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 27 ( 19) HAS LZ(WEIGHT)=-1.00( 50.0%) 1.00( 50.0%) MO 28 ( 20) HAS LZ(WEIGHT)= 0.00(100.0%) ...... END OF ROHF CALCULATION ...... STEP CPU TIME = 0.03 TOTAL CPU TIME = 6.6 ( 0.1 MIN) TOTAL WALL CLOCK TIME= 17.1 SECONDS, CPU UTILIZATION IS 38.43% --------------------------- COUPLED CLUSTER CALCULATION --------------------------- CCTYP =CR-CCL TOTAL NUMBER OF MOS = 28 NUMBER OF OCCUPIED MOS = 7 NUMBER OF FROZEN CORE MOS = 2 NUMBER OF FROZEN VIRTUAL MOS = 0 MAXIMUM CC ITERATIONS = 50 MAXIMUM DIIS ITERATIONS = -1 CONVERGENCE CRITERION FOR CC = 7 AMPLITUDE ACCURACY THRESHOLD = 0.0E+00 REGENERATING AO INTEGRAL LIST W/O SYMMETRY FOR THE INTEGRAL TRANSFORMATION. TOTAL NUMBER OF NONZERO TWO-ELECTRON INTEGRALS = 28697 2 INTEGRAL RECORDS WERE STORED ON DISK FILE 8. ...... END OF TWO-ELECTRON INTEGRALS ..... STEP CPU TIME = 0.06 TOTAL CPU TIME = 6.6 ( 0.1 MIN) TOTAL WALL CLOCK TIME= 17.1 SECONDS, CPU UTILIZATION IS 38.65% -------------------------------------------- PARTIAL TWO ELECTRON INTEGRAL TRANSFORMATION -------------------------------------------- NUMBER OF CORE MOLECULAR ORBITALS = 2 NUMBER OF OCCUPIED MOLECULAR ORBITALS = 28 TOTAL NUMBER OF MOLECULAR ORBITALS = 28 TOTAL NUMBER OF ATOMIC ORBITALS = 30 THRESHOLD FOR KEEPING TRANSFORMED 2E- INTEGRALS = 1.000E-09 AO INTEGRALS WILL BE READ IN FROM DISK... EVALUATING THE FROZEN CORE ENERGY... ----- FROZEN CORE ENERGY = -87.0909191490 PLAN A: REQUIREMENTS FOR FULLY IN-MEMORY TRANSFORMATION: # OF WORDS AVAILABLE = 992982 # OF WORDS NEEDED = 427262 CHOOSING IN MEMORY PARTIAL TRANSFORMATION... TOTAL NUMBER OF TRANSFORMED 2E- INTEGRALS KEPT = 15152 ... END OF INTEGRAL TRANSFORMATION ... STEP CPU TIME = 0.02 TOTAL CPU TIME = 6.6 ( 0.1 MIN) TOTAL WALL CLOCK TIME= 17.2 SECONDS, CPU UTILIZATION IS 38.69% -------------------------------------------------------------------- OPEN-SHELL COUPLED-CLUSTER PROGRAM: M. WLOCH, J.R. GOUR, P. PIECUCH -------------------------------------------------------------------- *************************************************************** THE FOLLOWING PAPERS SHOULD BE CITED WHEN USING OPEN-SHELL CCSD AND/OR CR-CCL COUPLED-CLUSTER OPTIONS: P. PIECUCH AND M. WLOCH, J. CHEM. PHYS. 123, 224105/1-10 (2005). M. WLOCH, J.R. GOUR, AND P. PIECUCH, J. PHYS. CHEM. A, 111, 11359-11382 (2007). THE FOLLOWING PAPERS SHOULD BE CITED IF USING THE EA-EOMCC OR IP-EOMCC OPTIONS: J. R. GOUR, P. PIECUCH, AND M. WLOCH, J. CHEM. PHYS. 123, 134113/1-14 (2005). J. R. GOUR AND P. PIECUCH, J. CHEM. PHYS. 125, 234107/1-17 (2006). *************************************************************** ROHF REFERENCE STATE WILL BE USED, MULTIPLICITY= 2 ------------------------------ OPEN SHELL CC INPUT PARAMETERS ------------------------------ CC SPIN MULTIPLICITY (MULT IN $CCINP) = 2 IMPLYING NO. OF OCCUP. ALPHA = 5, PLUS 2 FROZEN CORES NO. OF OCCUP. BETA = 4, PLUS 2 FROZEN CORES NO. OF VIRT. ALPHA = 21 NO. OF VIRT. BETA = 22 MAX.NO. OF CCSD AND LAMBDA ITERS (MAXCC) = 50 CCSD AND LAMBDA CONVERGENCE (FROM ICONV) = 1.000E-07 CCSD EQUATION RESTART OPTION (KREST) = 0 CCSD DIIS MICROITERATIONS (KMICRO) = 6 LAMDA EQUATION RESTART OPTION (LREST) = 0 LAMBDA DIIS MICROITERATIONS (LMICRO) = 5 MM(2,3) CODE SELECTION (IOPMET) = 0 MEMORY NEEDED BY FOCK PREPARATION : 5274 WORDS MEMORY NEEDED BY INT. PASS 1 : 105128 WORDS MEMORY NEEDED BY INT. PASS 2 : 208525 WORDS MEMORY NEEDED BY INT. PASS 3,..., 8: 157705 WORDS PASS= 1, WILL PROCESS [OO|OO], [VO|OO], [VV|OO], AND [VO|VO] INTEGRALS. WROTE 625 WORDS OF INTS TO FILE 74 WROTE 256 WORDS OF INTS TO FILE 75 WROTE 400 WORDS OF INTS TO FILE 76 WROTE 2625 WORDS OF INTS TO FILE 77 WROTE 1408 WORDS OF INTS TO FILE 78 WROTE 1680 WORDS OF INTS TO FILE 79 WROTE 2200 WORDS OF INTS TO FILE 80 WROTE 11025 WORDS OF (VA OA VA OA) INTS TO FILE 81 WROTE 7744 WORDS OF (VB OB VB OB) INTS TO FILE 82 WROTE 9240 WORDS OF (VA OB VA OB) INTS TO FILE 83 WROTE 11025 WORDS OF INTS TO FILE 84 WROTE 7744 WORDS OF INTS TO FILE 85 WROTE 7056 WORDS OF INTS TO FILE 86 WROTE 12100 WORDS OF INTS TO FILE 87 PASS= 2, WILL PROCESS [VV|VO] INTEGRALS. WROTE 46305 WORDS OF INTS TO FILE 88 WROTE 42592 WORDS OF INTS TO FILE 89 WROTE 50820 WORDS OF INTS TO FILE 90 WROTE 38808 WORDS OF INTS TO FILE 91 PASSES 3 TO 8 WILL PROCESS [VV|VV] INTEGRALS. PASS= 3, DOING MN-MX ALPHA VIRTUAL= 6- 10, MN-MX BETA VIRTUAL= 5- 8 PASS= 4, DOING MN-MX ALPHA VIRTUAL= 11- 15, MN-MX BETA VIRTUAL= 9- 12 PASS= 5, DOING MN-MX ALPHA VIRTUAL= 16- 20, MN-MX BETA VIRTUAL= 13- 16 PASS= 6, DOING MN-MX ALPHA VIRTUAL= 21- 25, MN-MX BETA VIRTUAL= 17- 20 PASS= 7, DOING MN-MX ALPHA VIRTUAL= 26- 26, MN-MX BETA VIRTUAL= 21- 24 PASS= 8, DOING MN-MX ALPHA VIRTUAL= 0- 0, MN-MX BETA VIRTUAL= 25- 26 WROTE 194481 WORDS OF INTS TO FILE 92 WROTE 234256 WORDS OF INTS TO FILE 92 WROTE 213444 WORDS OF INTS TO FILE 92 ....... DONE WITH CC INTEGRAL PREPARATION ....... STEP CPU TIME = 0.02 TOTAL CPU TIME = 6.7 ( 0.1 MIN) TOTAL WALL CLOCK TIME= 17.4 SECONDS, CPU UTILIZATION IS 38.39% ----------------------- OPEN-SHELL CCSD PROGRAM ----------------------- MEMORY NEEDED BY CCSD : 284164 WORDS BEGINNING OPEN SHELL CCSD ITERATIONS ITERATION: 1 CCSD CORR E= -0.2581096071 CONV: 0.111396275 ITERATION: 2 CCSD CORR E= -0.2729765721 CONV: 0.044245630 ITERATION: 3 CCSD CORR E= -0.2726838812 CONV: 0.039629738 ITERATION: 4 CCSD CORR E= -0.2756699298 CONV: 0.020585257 ITERATION: 5 CCSD CORR E= -0.2759806484 CONV: 0.020636615 ITERATION: 6 CCSD CORR E= -0.2770223776 CONV: 0.013295127 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 6) ITERATION: 7 CCSD CORR E= -0.2788424504 CONV: 0.003847895 ITERATION: 8 CCSD CORR E= -0.2788873644 CONV: 0.002809076 ITERATION: 9 CCSD CORR E= -0.2789170843 CONV: 0.002191693 ITERATION: 10 CCSD CORR E= -0.2789399211 CONV: 0.001837651 ITERATION: 11 CCSD CORR E= -0.2789603115 CONV: 0.001511245 ITERATION: 12 CCSD CORR E= -0.2789771862 CONV: 0.001270542 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 6) ITERATION: 13 CCSD CORR E= -0.2790623164 CONV: 0.000239339 ITERATION: 14 CCSD CORR E= -0.2790793474 CONV: 0.000120278 ITERATION: 15 CCSD CORR E= -0.2790820208 CONV: 0.000101237 ITERATION: 16 CCSD CORR E= -0.2790872798 CONV: 0.000062770 ITERATION: 17 CCSD CORR E= -0.2790888492 CONV: 0.000054296 ITERATION: 18 CCSD CORR E= -0.2790910580 CONV: 0.000038291 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 6) ITERATION: 19 CCSD CORR E= -0.2790958305 CONV: 0.000010821 ITERATION: 20 CCSD CORR E= -0.2790959869 CONV: 0.000008161 ITERATION: 21 CCSD CORR E= -0.2790961220 CONV: 0.000006358 ITERATION: 22 CCSD CORR E= -0.2790961963 CONV: 0.000005361 ITERATION: 23 CCSD CORR E= -0.2790962687 CONV: 0.000004391 ITERATION: 24 CCSD CORR E= -0.2790963230 CONV: 0.000003701 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 6) ITERATION: 25 CCSD CORR E= -0.2790965966 CONV: 0.000000678 ITERATION: 26 CCSD CORR E= -0.2790966383 CONV: 0.000000364 ITERATION: 27 CCSD CORR E= -0.2790966478 CONV: 0.000000280 ITERATION: 28 CCSD CORR E= -0.2790966611 CONV: 0.000000180 ITERATION: 29 CCSD CORR E= -0.2790966659 CONV: 0.000000145 ITERATION: 30 CCSD CORR E= -0.2790966715 CONV: 0.000000103 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 6) ITERATION: 31 CCSD CORR E= -0.2790966835 CONV: 0.000000029 THE CCSD ITERATIONS HAVE CONVERGED CCSD CORRELATION ENERGY: -0.2790966835 THE LARGEST T1 AND T2 AMPLITUDES ARE T1= 0.0357446163 FOR IA -> AA = 5 8 T1= 0.0357446163 FOR IA -> AA = 6 9 T1= 0.2179894281 FOR IB -> AB = 4 7 T1= -0.0348451203 FOR IB -> AB = 5 8 T1= -0.0348451203 FOR IB -> AB = 6 9 T2= -0.0348354831 FOR IA,JA -> AA, BA = 5 6 8 9 T2= -0.0386153095 FOR IB,JB -> AB, BB = 4 5 7 8 T2= -0.0386153095 FOR IB,JB -> AB, BB = 4 6 7 9 T2= -0.0371940248 FOR IB,JB -> AB, BB = 5 6 8 9 T2= -0.0401467831 FOR IA,JB -> AA, BB = 4 4 8 8 T2= -0.0401467831 FOR IA,JB -> AA, BB = 4 4 9 9 T2= -0.0262398532 FOR IA,JB -> AA, BB = 4 4 15 7 T2= -0.0277147215 FOR IA,JB -> AA, BB = 4 4 15 15 T2= -0.0327717471 FOR IA,JB -> AA, BB = 4 5 8 7 T2= -0.0327717471 FOR IA,JB -> AA, BB = 4 6 9 7 T2= -0.0804320915 FOR IA,JB -> AA, BB = 5 4 8 7 T2= -0.1027604757 FOR IA,JB -> AA, BB = 5 5 8 8 T2= 0.0272550445 FOR IA,JB -> AA, BB = 5 5 8 16 T2= -0.0251628791 FOR IA,JB -> AA, BB = 5 5 12 12 T2= 0.0267479503 FOR IA,JB -> AA, BB = 5 5 16 8 T2= -0.0610688077 FOR IA,JB -> AA, BB = 5 6 8 9 T2= -0.0274169542 FOR IA,JB -> AA, BB = 5 6 9 8 T2= -0.0804320915 FOR IA,JB -> AA, BB = 6 4 9 7 T2= -0.0274169542 FOR IA,JB -> AA, BB = 6 5 8 9 T2= -0.0610688077 FOR IA,JB -> AA, BB = 6 5 9 8 T2= -0.1027604757 FOR IA,JB -> AA, BB = 6 6 9 9 T2= 0.0272550445 FOR IA,JB -> AA, BB = 6 6 9 17 T2= -0.0251628791 FOR IA,JB -> AA, BB = 6 6 13 13 T2= 0.0267479503 FOR IA,JB -> AA, BB = 6 6 17 9 T2= -0.0291295763 FOR IA,JB -> AA, BB = 7 4 8 8 T2= -0.0291295763 FOR IA,JB -> AA, BB = 7 4 9 9 T2= 0.0286731430 FOR IA,JB -> AA, BB = 7 4 11 7 T2= 0.0291407416 FOR IA,JB -> AA, BB = 7 4 15 7 T2= -0.0537240956 FOR IA,JB -> AA, BB = 7 5 8 7 T2= -0.0537240956 FOR IA,JB -> AA, BB = 7 6 9 7 SUMMARY OF CCSD RESULTS REFERENCE ENERGY: -92.1971251468 CCSD ENERGY: -92.4762218303 CORR. E= -0.2790966835 ....... DONE WITH CCSD AMPLITUDE ITERATIONS ....... STEP CPU TIME = 1.66 TOTAL CPU TIME = 8.3 ( 0.1 MIN) TOTAL WALL CLOCK TIME= 20.4 SECONDS, CPU UTILIZATION IS 40.72% ------------------------------------- OPEN-SHELL EQUATION-OF-MOTION PROGRAM ------------------------------------- MEMORY NEEDED BY ONEHBAR : 191538 WORDS MEMORY NEEDED BY TWOHBAR : 317513 WORDS ....... DONE WITH MATRIX ELEMENTS OF HBAR ....... STEP CPU TIME = 0.12 TOTAL CPU TIME = 8.4 ( 0.1 MIN) TOTAL WALL CLOCK TIME= 20.5 SECONDS, CPU UTILIZATION IS 41.09% MEMORY NEEDED BY OPENLEFT: 207218 WORDS BEGINNING LAMBDA VECTOR ITERATIONS ITERATION: 1 CONV: 0.067432959 ITERATION: 2 CONV: 0.019034340 ITERATION: 3 CONV: 0.012962398 ITERATION: 4 CONV: 0.006043672 ITERATION: 5 CONV: 0.005067958 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 5) ITERATION: 6 CONV: 0.002812037 ITERATION: 7 CONV: 0.001933847 ITERATION: 8 CONV: 0.001691431 ITERATION: 9 CONV: 0.001361326 ITERATION: 10 CONV: 0.001160447 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 5) ITERATION: 11 CONV: 0.000186226 ITERATION: 12 CONV: 0.000082904 ITERATION: 13 CONV: 0.000060726 ITERATION: 14 CONV: 0.000044287 ITERATION: 15 CONV: 0.000036081 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 5) ITERATION: 16 CONV: 0.000018401 ITERATION: 17 CONV: 0.000011111 ITERATION: 18 CONV: 0.000009903 ITERATION: 19 CONV: 0.000007575 ITERATION: 20 CONV: 0.000006553 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 5) ITERATION: 21 CONV: 0.000001933 ITERATION: 22 CONV: 0.000001097 ITERATION: 23 CONV: 0.000000815 ITERATION: 24 CONV: 0.000000630 ITERATION: 25 CONV: 0.000000515 DOING DIIS EXTRAPOLATION (DIM.OF THE SPACE= 5) ITERATION: 26 CONV: 0.000000254 ITERATION: 27 CONV: 0.000000159 ITERATION: 28 CONV: 0.000000142 ITERATION: 29 CONV: 0.000000108 ITERATION: 30 CONV: 0.000000094 LAMBDA VECTOR ITERATIONS HAVE CONVERGED, THE LARGEST LA1 AND LA2 AMPLITUDES ARE LA1= 0.1592591740 FOR IB -> AB = 4 7 LA1= -0.0512016506 FOR IB -> AB = 5 8 LA1= -0.0512016506 FOR IB -> AB = 6 9 LA2= -0.0274335634 FOR IA,JA -> AA, BA = 5 6 8 9 LA2= -0.0423225557 FOR IB,JB -> AB, BB = 4 5 7 8 LA2= -0.0423225557 FOR IB,JB -> AB, BB = 4 6 7 9 LA2= -0.0281996949 FOR IB,JB -> AB, BB = 5 6 8 9 LA2= -0.0352259687 FOR IA,JB -> AA, BB = 4 4 8 8 LA2= -0.0352259687 FOR IA,JB -> AA, BB = 4 4 9 9 LA2= -0.0258731575 FOR IA,JB -> AA, BB = 4 4 15 7 LA2= -0.0261590826 FOR IA,JB -> AA, BB = 4 4 15 15 LA2= -0.0274626491 FOR IA,JB -> AA, BB = 4 5 8 7 LA2= -0.0274626491 FOR IA,JB -> AA, BB = 4 6 9 7 LA2= -0.0703850622 FOR IA,JB -> AA, BB = 5 4 8 7 LA2= -0.0962891469 FOR IA,JB -> AA, BB = 5 5 8 8 LA2= 0.0262533506 FOR IA,JB -> AA, BB = 5 5 8 16 LA2= 0.0252886771 FOR IA,JB -> AA, BB = 5 5 16 8 LA2= -0.0556619036 FOR IA,JB -> AA, BB = 5 6 8 9 LA2= -0.0268526537 FOR IA,JB -> AA, BB = 5 6 9 8 LA2= -0.0703850622 FOR IA,JB -> AA, BB = 6 4 9 7 LA2= -0.0268526537 FOR IA,JB -> AA, BB = 6 5 8 9 LA2= -0.0556619036 FOR IA,JB -> AA, BB = 6 5 9 8 LA2= -0.0962891469 FOR IA,JB -> AA, BB = 6 6 9 9 LA2= 0.0262533506 FOR IA,JB -> AA, BB = 6 6 9 17 LA2= 0.0252886771 FOR IA,JB -> AA, BB = 6 6 17 9 LA2= -0.0255371943 FOR IA,JB -> AA, BB = 7 4 8 8 LA2= -0.0255371943 FOR IA,JB -> AA, BB = 7 4 9 9 LA2= 0.0270506752 FOR IA,JB -> AA, BB = 7 4 11 7 LA2= 0.0266105721 FOR IA,JB -> AA, BB = 7 4 15 7 LA2= -0.0488513036 FOR IA,JB -> AA, BB = 7 5 8 7 LA2= -0.0488513036 FOR IA,JB -> AA, BB = 7 6 9 7 ....... DONE WITH LAMBDA AMPLITUDE ITERATIONS ....... STEP CPU TIME = 1.06 TOTAL CPU TIME = 9.5 ( 0.2 MIN) TOTAL WALL CLOCK TIME= 22.1 SECONDS, CPU UTILIZATION IS 43.03% ----------------------------- OPEN-SHELL CR-CC(2,3) PROGRAM ----------------------------- AVAILABLE MEMORY : 992930 WORDS MEMORY NEEDED BY MM(2,3) : 504814 WORDS, CODE=HIGH MEMORY VERSION (1) CHOOSING THE -HIGH MEMORY VERSION- FOR OPEN SHELL MM(2,3) MAIN RESULTS: CR-CC(2,3) = CR-CC(2,3),D = CR-CCSD(T)_L CALCULATIONS GROUND STATE CR-CC(2,3),A CORRECTION -0.012435, TOTAL E= -92.4886567132 GROUND STATE CR-CC(2,3),B CORRECTION -0.011584, TOTAL E= -92.4878054192 GROUND STATE CR-CC(2,3),C CORRECTION -0.016102, TOTAL E= -92.4923242251 GROUND STATE CR-CC(2,3),D CORRECTION -0.015950, TOTAL E= -92.4921720042 CR-CC(2,3),A ENERGY IS IDENTICAL TO THE CCSD(2)_T ENERGY. CR-CC(2,3),D ENERGY IS IDENTICAL TO COMPLETE CR-CC(2,3) ENERGY (CR-CCSD(T)_L) SUMMARY OF CR-CC(2,3) OR CR-CCSD(T)_L CALCULATIONS CCSD E= -92.4762218303 CORR. E= -0.2790966835 CR-CC(2,3),A OR CCSD(2)_T E= -92.4886567132 CORR. E= -0.2915315664 CR-CC(2,3) OR CR-CCSD(T)_L E= -92.4921720042 CORR. E= -0.2950468574 THE MOST ACCURATE ENERGETICS IS PROVIDED BY CR-CC(2,3) = CR-CC(2,3),D ..... DONE WITH CC NON-ITERATIVE TRIPLES CORRECTIONS ..... STEP CPU TIME = 0.17 TOTAL CPU TIME = 9.7 ( 0.2 MIN) TOTAL WALL CLOCK TIME= 22.3 SECONDS, CPU UTILIZATION IS 43.44% THE DERIVATIVE COMPUTATION WILL BE DONE WITH THE TYPE -A- CR-CC(2,3) ENERGY, WHICH IS INVARIANT TO ROTATIONS OF THE ORBITALS. IMODE= 1 IVIB= 2 E= -92.4886567132 ---------------------- GRADIENT OF THE ENERGY ---------------------- UNITS ARE HARTREE/BOHR E'X E'Y E'Z 1 C 0.000000000 0.000000000 0.046074510 2 N 0.000000000 0.000000000 -0.046074510 MAXIMUM GRADIENT = 0.046074510 RMS GRADIENT = 0.026601131 -------------------- INTERNAL COORDINATES -------------------- - - ATOMS - - COORDINATE GRADIENT NO. TYPE I J K L M N (ANG,DEG) (H/B,H/RAD) ---------------------------------------------------------------- 1 STRETCH 1 2 1.1718000 -0.0460745 MAXIMUM GRADIENT = 0.046074510 RMS GRADIENT = 0.046074510 $VIB IVIB= 0 IATOM= 0 ICOORD= 0 E= -92.4894269043 0.000000000E+00 0.000000000E+00 4.607450976E-02 0.000000000E+00 0.000000000E+00 -4.607450976E-02 0.000000000E+00 0.000000000E+00-2.174180213E+00 ..... END OF SINGLE POINT GRADIENT ..... STEP CPU TIME = 0.00 TOTAL CPU TIME = 9.7 ( 0.2 MIN) TOTAL WALL CLOCK TIME= 22.3 SECONDS, CPU UTILIZATION IS 43.44% 580000 WORDS OF DYNAMIC MEMORY USED EXECUTION OF GAMESS TERMINATED NORMALLY Thu Jun 20 13:31:32 2013 DDI: 263656 bytes (0.3 MB / 0 MWords) used by master data server. ---------------------------------------- CPU timing information for all processes ======================================== 0: 6.799 + 2.882 = 9.682 ---------------------------------------- ddikick.x: exited gracefully. unset echo ----- accounting info ----- Files used on the master node PaulDirac were: -rw-r--r-- 1 nikita 14868 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.dat -rw-r--r-- 1 nikita 1291 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F05 -rw-r--r-- 1 nikita 360032 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F08 -rw-r--r-- 1 nikita 362848 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F09 -rw-r--r-- 1 nikita 2454000 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F10 -rw-r--r-- 1 nikita 968000 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F70 -rw-r--r-- 1 nikita 3388000 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F71 -rw-r--r-- 1 nikita 38720 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F72 -rw-r--r-- 1 nikita 0 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F73 -rw-r--r-- 1 nikita 5000 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F74 -rw-r--r-- 1 nikita 2048 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F75 -rw-r--r-- 1 nikita 3200 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F76 -rw-r--r-- 1 nikita 21000 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F77 -rw-r--r-- 1 nikita 11264 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F78 -rw-r--r-- 1 nikita 13440 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F79 -rw-r--r-- 1 nikita 17600 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F80 -rw-r--r-- 1 nikita 88200 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F81 -rw-r--r-- 1 nikita 61952 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F82 -rw-r--r-- 1 nikita 73920 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F83 -rw-r--r-- 1 nikita 88200 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F84 -rw-r--r-- 1 nikita 61952 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F85 -rw-r--r-- 1 nikita 56448 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F86 -rw-r--r-- 1 nikita 96800 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F87 -rw-r--r-- 1 nikita 370440 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F88 -rw-r--r-- 1 nikita 340736 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F89 -rw-r--r-- 1 nikita 406560 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F90 -rw-r--r-- 1 nikita 310464 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F91 -rw-r--r-- 1 nikita 5536960 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F92 -rw-r--r-- 1 nikita 1645600 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F93 -rw-r--r-- 1 nikita 5962880 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F94 -rw-r--r-- 1 nikita 5536960 Jun 20 13:31 /mnt/disk2/nikita/scr/exam42.F95 ls: No match. ls: No match. ls: No match. Thu Jun 20 13:31:35 EDT 2013 0.251u 0.159s 0:25.67 1.5% 0+0k 0+0io 0pf+0w