HOMEWORK - DUE 11/18/2019

MATH 20
(1) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Prove: If f and g are both one-to-one, then $(g \circ f)$ is one-to-one.
(2) In high school, you learn that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is one-to-one if its graph passes the horizontal line test. Explain what this means and why it agrees with our definition of a one-to-one function $f: \mathbb{R} \rightarrow \mathbb{R}$.
(3) Consider the function $\sin : \mathbb{R} \rightarrow \mathbb{R}$. Restrict the domain and target so that the function is a bijection. Use this to determine the domain and range of the inverse trigonometric function arcsin. Do the same for the trigonometric functions cosine and tangent.
(4) Consider the function $f(x)=\frac{3 x-6}{2 x+1}$.
(a) Explicitly find a function $g(y)$ that is inverse to f. You will do this by solving for x in the equation $y=\frac{3 x-6}{2 x+1}$.
(b) The functions f and g are inverse functions on what sets? (i.e. What is domain and range of $f(x)$ and $g(y) ?$)
(c) Show explicitly (algebraically) that $(g \circ f)(x)=x$ and $(f \circ g)(y)=y$ for all $x \in \operatorname{Domain}(f)$ and $y \in \operatorname{Domain}(g)$.
(5) Consider the function

$$
f(x)=\left(x^{2}-2 x+3\right) e^{x}
$$

(a) Try to find an inverse to f^{-1} explicitly, using algebra. (You will probably be unsuccessful.)
(b) Use calculus to show that $f: \mathbb{R} \rightarrow(0, \infty)$ is a bijection.
(6) Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$ are invertible functions. Show that $(g \circ f): A \rightarrow C$ is invertible, and that $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.
(Hint: The proof is simple; it follows very directly from the definition of inverse function.)

[^0]
[^0]: Date: November 6, 2019.

