Linear Programming, Lecture 4

Corbett Redden

October 1, 2018

Corbett Redden Linear Programming, Lecture 4

Simplex Form Conventions Examples

Standard Form

or

or

For an LP, "Standard Form" is *usually* defined as Maximize $\mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$

Maximize $\mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$, $\mathbf{x} \geq \mathbf{0}$.

Maximize $\mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge \mathbf{0}$.

Simplex Form Conventions Examples

Simplex Method

To run the simplex method, we start from a Linear Program (LP) in the following *standard simplex form.*

Max zs.t. $(-z) + a_{01}x_1 + \dots + a_{0n}x_n = b_0$ $a_{11}x_1 + \dots + a_{1n}x_n = b_1$ \vdots $a_{m1}x_1 + \dots + a_{mn}x_n = b_m$ $x_i > 0$
 Review
 Simplex Form

 Obtaining Initial Simplex Form
 Conventions

 Solution?
 Examples

Max
s.t.
$$(-z) + a_{01}x_1 + \dots + a_{0n}x_n = b_0$$

 $a_{11}x_1 + \dots + a_{1n}x_n = b_1$
 \vdots
 $a_{m1}x_1 + \dots + a_{mn}x_n = b_m$
 $x_i \ge 0$

To be in standard simplex form:

- 1. All decision variables x_i (except -z) are non-negative.
- 2. All other constraints are equalities.
- 3. The RHS (except for the "cost row" or "*z*-row") is non-negative.
- 4. For each row *i*, there is a column equal to *e_i* (a 1 in row *i*, and 0 in all other rows).

Simplex Form Conventions Examples

Remarks

- There are multiple conventions as to what constitutes "Standard Form." They are all different, but more or less equivalent in terms of requirements.
- ► Given an LP in the form: Max z, subject to inequalities all of the form ∑ a_ix_i ≤ b, one only needs to introduce slack variables to obtain starting standard form for Simplex Method.
- Today, we will learn techniques for more complicated LPs.

Simplex Form Conventions Examples

Example 1

Is the following LP in standard simplex form? Maximize *z*, subject to $x_1, x_2, x_3, s_1, s_2 \ge 0$ and the equalities:

-Z	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>s</i> 1	s 2	=	RHS
1	1	9	1	0	0		0
0	1	2	3	1	0		9
0	3	2	2	0	1		15

- Non-negative decision variables?
- Equalities for constrains?
- Non-negative RHS entries?
- Columns e_i ? $\checkmark -z, s_1, s_2$

Simplex Form Conventions Examples

Example 2

Is the following LP in standard simplex form? Maximize *z*, subject to $x_1, x_2, x_3, s_1, s_2 \ge 0$ and the equalities:

-Z	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>S</i> 1	s 2	=	RHS
1	1	9	1	0	0		0
0	1	2	3	-1	0		9
0	3	2	2	0	1		15

- Non-negative decision variables?
- Equalities for constrains?
- Non-negative RHS entries?
- Columns e_i ? **X** No column $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$

Max/Min Negative variables Finding Initial BFS

Potential complications

- 1. Minimizing instead of maximizing.
- 2. Decision variables allowed to take negative values.
- **3**. Inequalities of form $\sum a_i x_i \ge b$.

Max/Min Negative variables Finding Initial BFS

Maximize/Minimize

Maximizing $f(x_1, \ldots, x_n) \Leftrightarrow$ Minimizing $-f(x_1, \ldots, x_n)$

Notes:

- ► To change between max/min, just multiply all coefficients by -1.
- In practice, some implementations of simplex method assume you are maximizing, and some assume you are minimizing. Max vs Min is a minor detail.
- When doing simplex method by hand, you may simply keep cost row the same as when maximizing, but perform pivots on columns with a *negative* entry in the cost row.

Max/Min Negative variables Finding Initial BFS

Decision variables taking negative values

Bounded below: Suppose we have a variable $x \ge -20$. **Then:** Substitute for new variable $x = \hat{x} - 20$, or $\hat{x} = x + 20$, with $\hat{x} \ge 0$. **Note:** For constraint $x \ge 20$, we may introduce surplus variable, or we may use substitution $x = \hat{x} + 20$, with $\hat{x} > 0$.

Unbounded: Suppose we have unbounded variable *w*. **Then:** Use substitution $w = w^+ - w^-$, with $w^+, w^- \ge 0$. **Note:** When more than one decision variable is unrestricted, a single variable x^- can be used for all of them, with the interpretation that it is the most negative of all the decision variables.

Max/Min Negative variables Finding Initial BFS

Put LP in Simplex Form to start Simplex Method

Question: Will the LP have a unique solution?

Max/Min Negative variables Finding Initial BFS

Inequalities:

$$-20 \le x + y \le 20$$
$$-20 \le x - y \le 20$$

Substitutions:

$$x = x^+ - x^-$$
 and $y = y^+ - y^-$
 $x^+, x^-, y^+, y^- \ge 0$

New inequalities:

$$-20 \le x^{+} - x^{-} + y^{+} - y^{-} \le 20$$

$$-20 \le x^{+} - x^{-} - y^{+} + y^{-} \le 20$$

Min
$$x^+ - x^- + y^+ - y^-$$

s.t. $x^+ - x^- + y^+ - y^- \le 20$
 $x^+ - x^- + y^+ - y^- \ge -20$
 $x^+ - x^- - y^+ + y^- \le 20$
 $x^+ - x^- - y^+ + y^- \ge -20$
 $x^+, x^-, y^+, y^- \ge 0$

Max
$$z = -x^+ + x^- - y^- + y^-$$

s.t. $x^+ - x^- + y^+ - y^- \le 20$
 $x^+ - x^- + y^+ - y^- \ge -20$
 $x^+ - x^- - y^+ + y^- \le 20$
 $x^+ - x^- - y^+ + y^- \ge -20$
 $x^+, x^-, y^+, y^- \ge 0$

Max
$$z = -x^{+} + x^{-} - y^{-} + y^{-}$$

s.t. $x^{+} - x^{-} + y^{+} - y^{-} + s_{1} = 20$
 $x^{+} - x^{-} + y^{+} - y^{-} - s_{2} = -20$
 $x^{+} - x^{-} - y^{+} + y^{-} + s_{3} = 20$
 $x^{+} - x^{-} - y^{+} + y^{-} - s_{4} = -20$
 $x^{+} + x^{-} + y^{+} + y^{-} - s_{4} = -20$

Maximize z subject to non-negativity constraints and:

(-z)	x +	x ⁻	y +	y ⁻	<i>s</i> 1	s 2	s 3	S 4	RHS
1	-1	1	-1	1	0	0	0	0	0
0	1	-1	1	-1	1	0	0	0	20
0	1	-1	1	-1	0	-1	0	0	-20
0	1	-1	-1	1	0	0	1	0	20
0	1	-1	-1	1	0	0	0	-1	-20
(-z)	<i>x</i> ⁺			y ⁻	S 1	<i>S</i> ₂	s 3	S 4	RHS
1	-1	1	-1	1	0	0	0	0	0
0	1	-1	1	-1	1	0	0	0	20
0	-1	1	-1	1	0	1	0	0	20
0 0	-1 1	1 _1	-1 -1		0 0	1 0	0 1	0 0	20 20

Max/Min Negative variables Finding Initial BFS

Alternate Options:

- Since two variables are unbounded, we could substitute x = x⁺ − t and y = y⁺ − t, where x⁺, y⁺, t ≥ 0. Here, t = max{−x, −y, 0}.
- Inspecting the inequalities, we observe that x, y ≥ -20. Hence, we could use substitutions x = x̂ - 20, y = ŷ - 20, x̂, ŷ > 0.

Max/Min Negative variables Finding Initial BFS

\geq Inequalities

Given: $\sum_{j} a_{ij} x_j \ge b_i$, with $b_i > 0$ **Introduce:** surplus variable $s \ge 0$ to form

$$\sum_j a_{ij} x_j - s_i = b_i.$$

Problem: Neither $\sum_{j} a_{ij}x_j - s_i = b_i$ nor $\sum_{j} -a_{ij}x_j + s_i = -b_i$ give something in simplex form. **Solution:** Introduce *artificial variable(s)* $\alpha_i \ge 0$, $\sum_{j} a_{ij}x_j - s_i + \alpha_i = b_i$. Then, solve the related LP with objective function $\sum \alpha_i$, and same constraints. This produces an initial Basic Feasible Solution and immediately translates to the LP in simplex form.

Max/Min Negative variables Finding Initial BFS

Example

Review Max/Min Obtaining Initial Simplex Form Negative variables Solution? Finding Initial BFS

Phase I auxiliary LP:

Min	<i>X</i> 5
s.t.	$x_1 + x_2 + x_3 = 3$
	$-x_1 + x_2 - x_4 + x_5 = 1$
	$x_1,\ldots x_5 \ge 0$

-W	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>X</i> 5	RHS
1	0	0	0	0	-1	0
0	1	1	1	0	0	3
0	-1	1	0	-1	1	1
- <i>V</i>	<i>v x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	RHS
	v x ₁ -1					RHS 1
		1		-1	0	

Review	Max/Min
Obtaining Initial Simplex Form	Negative variables
Solution?	Finding Initial BFS

Solution to Phase I auxiliary LP:

Solution of $x_1 = 0, x_2 = 1, x_3 = 2, x_4 = 0$ gives $x_5 = 0$. These values (x_1, \ldots, x_4) satisfy the original LPs constraints, and they form our initial Basic Feasible Solution!

Phase II, Solving initial LP:

-Z	<i>x</i> ₁	<i>x</i> ₂	X ₃	<i>x</i> ₄	RHS
1	2	1	0	0	0
0	2	0	1	1	2
0	-1	1	0	-1	1

ERO's to isolate x_2, x_3 , then in simplex form.

Suppose that when performing the simplex method, you obtain column with positive number in objective row, and non-positive numbers in rest of column. Then, the feasible region is unbounded, and **a solution does not exist.**

Example:

-Z	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>x</i> ₄	RHS
1	2	0	0	0	0
0	-2	0	1	1	2
0	-1	1	0	-1	1

For *basic solution*, we let $x_1 = 0$. But, we can let x_1 be any positive number, and we obtain a *better* feasible solution.

Unbounded regions Cycling

Cycling

When several iterations of the simplex method do not improve the current objective value, this is called **stalling**.

When, after several iterations, the simplex method returns a previous tableau, this is called **cycling.**

In general, stalling and cycling can occur. Some implementations of the simplex method include special provisions to prevent cycling; other implementations do not try to prevent cycling, and instead rely on small rounding errors to eventually move off the cycle.

Unbounded regions Cycling

Bland's Rule:

- 1. Select the first column with positive coefficient in *Z*-row.
- 2. If there is a tie in Min-Ratio test, choose the first row within the tie.

Theorem: Following Bland's Rule, the simplex method will always terminate in a finite number of steps.