Class Dates | Material | Homework | Handouts |
9/9 | Linear Systems, Row Reduction Ch 1: I, III |
Homework 1 | Row Reduction Demonstration 1 Demonstration 2 Step-by-Step RR calculator |
9/16 | Applications, Solution sets, Matrix Arithmetic Ch. 1: I.2, I.3 |
#4 from HW1 p. 20: 2.19ac, 2.21, 2.29 p. 33: 3.16ac optional: p.20 2.17; p. 226 1.8; p.233 2.14 |
|
9/23 | Vector spaces spans |
p. 87: 1.22acd, 1.33ac, Bonus: 1.35 p. 97: 2.22, 2.23b, 2.27abc Install Mathematica |
Quiz on RR |
9/30 | Mathematica | p.97: 2.25 Graphically via Mathematica: p.41: 1.7 p. 97: 2.22 |
See p. 8 of Mathematica Notes |
10/7 | Subspaces, Linear Independence, Basis, Coordinates |
p. 87: 1.19b (show it is subspace) p. 97: 2.20bc, 2.29a p.110: 1.20ad, 1.21ad, 1.23ab, 1.24a, [future 1.28a] p.118: 1.18, 1.20 |
Bonus: Use Mathematica to show {1, x, x^2, ..., x^50} is linearly independent. See this Notebook file or pdf |
10/14 | Columbus Day | No class. | |
10/21 | Quiz 2 (spans) Dimension, Linear Maps |
p. 125: 2.18 Read pp.121-125 p.188: 1.19ab, 1.27a, 1.34, 1.40b |
Quiz 2 Solutions |
10/28 | Kernel, Image | Study for Midterm | Review sheet Partial Solutions |
11/4 | Midterm Test | p.200: 2.21, 2.23bc/2.24bc, 2.37 | Midterm Solutions | 11/11 | Matrix representation of linear map |
p. 212: 1.16, 1.17, 1.18, 1.20, 1.24 p. 220: 2.14 Read p. 175-181, then do p.181: 2.9 (use dimension) |
Notes | 11/18 | Matrix Inverses Change of Basis |
p. 234: 2.19 p. 252: 4.15acd, 4.18 p. 265: 2.13, 2.16 |
11/25 | Change of Basis Rank/Nullity Thm Calculations |
Homework | 12/2 | Markov Chains Rank-Nullity Thm |
p. 304: 2,3 (use Mathematica) Prior HW, Review for Final |
12/9 | Review | Study for Final Exam | Review Sheet | 12/16 | Final Exam |