Basis Set References An excellent review of the relationship between the atomic basis used, and the accuracy with which various molecular properties will be computed is: E.R.Davidson, D.Feller Chem.Rev. 86, 681-696(1986). STO-NG H-Ne Ref. 1 and 2 Na-Ar, Ref. 2 and 3 ** K,Ca,Ga-Kr Ref. 4 Rb,Sr,In-Xe Ref. 5 Sc-Zn,Y-Cd Ref. 6 1) W.J.Hehre, R.F.Stewart, J.A.Pople J.Chem.Phys. 51, 2657-2664(1969). 2) W.J.Hehre, R.Ditchfield, R.F.Stewart, J.A.Pople J.Chem.Phys. 52, 2769-2773(1970). 3) M.S.Gordon, M.D.Bjorke, F.J.Marsh, M.S.Korth J.Am.Chem.Soc. 100, 2670-2678(1978). ** the valence scale factors for Na-Cl are taken from this paper, rather than the "official" Pople values in Ref. 2. 4) W.J.Pietro, B.A.Levi, W.J.Hehre, R.F.Stewart, Inorg.Chem. 19, 2225-2229(1980). 5) W.J.Pietro, E.S.Blurock, R.F.Hout,Jr., W.J.Hehre, D.J. DeFrees, R.F.Stewart Inorg.Chem. 20, 3650-3654(1980). 6) W.J.Pietro, W.J.Hehre J.Comput.Chem. 4, 241-251(1983). MINI/MIDI H-Xe Ref. 9 9) "Gaussian Basis Sets for Molecular Calculations" S.Huzinaga, J.Andzelm, M.Klobukowski, E.Radzio-Andzelm, Y.Sakai, H.Tatewaki Elsevier, Amsterdam, 1984. This book is referred to in certain circles as "the green book" based on the color of its cover. The MINI bases are three Gaussian expansions of each atomic orbital. The exponents and contraction coefficients are optimized for each element, and s and p exponents are not constrained to be equal. As a result these bases give much lower energies than does STO-3G. The valence MINI orbitals of main group elements are scaled by factors optimized by John Deisz at North Dakota State University. Transition metal MINI bases are not scaled. The MIDI bases are derived from the MINI sets by floating the outermost primitive in each valence orbitals, and renormalizing the remaining 2 gaussians. MIDI bases are not scaled by GAMESS. The transition metal bases are taken from the lowest SCF terms in the s**1,d**n configurations. 3-21G H-Ne Ref. 10 (also 6-21G) Na-Ar Ref. 11 (also 6-21G) K,Ca,Ga-Kr,Rb,Sr,In-Xe Ref. 12 Sc-Zn Ref. 13 Y-Cd Ref. 14 10) J.S.Binkley, J.A.Pople, W.J.Hehre J.Am.Chem.Soc. 102, 939-947(1980). 11) M.S.Gordon, J.S.Binkley, J.A.Pople, W.J.Pietro, W.J.Hehre J.Am.Chem.Soc. 104, 2797-2803(1982). 12) K.D.Dobbs, W.J.Hehre J.Comput.Chem. 7,359-378(1986) 13) K.D.Dobbs, W.J.Hehre J.Comput.Chem. 8,861-879(1987) 14) K.D.Dobbs, W.J.Hehre J.Comput.Chem. 8,880-893(1987) N-31G references for 4-31G 5-31G 6-31G H 15 15 15 He 23 23 23 Li 19,24 19 Be 20,24 20 B 17 19 C-F 15 16 16 Ne 23 23 Na-Al 22 Si 21 ** P-Cl 18 22 Ar 22 K-Kr 26 15) R.Ditchfield, W.J.Hehre, J.A.Pople J.Chem.Phys. 54, 724-728(1971). 16) W.J.Hehre, R.Ditchfield, J.A.Pople J.Chem.Phys. 56, 2257-2261(1972). 17) W.J.Hehre, J.A.Pople J.Chem.Phys. 56, 4233-4234(1972). 18) W.J.Hehre, W.A.Lathan J.Chem.Phys. 56,5255-5257(1972). 19) J.D.Dill, J.A.Pople J.Chem.Phys. 62, 2921-2923(1975). 20) J.S.Binkley, J.A.Pople J.Chem.Phys. 66, 879-880(1977). 21) M.S.Gordon Chem.Phys.Lett. 76, 163-168(1980) ** - Note that the built in 6-31G basis for Si is not that given by Pople in reference 22. The Gordon basis gives a better wavefunction, for a ROHF calculation in full atomic (Kh) symmetry, 6-31G Energy virial Gordon -288.828573 1.999978 Pople -288.828405 2.000280 See the input examples for how to run in Kh. 22) M.M.Francl, W.J.Pietro, W.J.Hehre, J.S.Binkley, M.S.Gordon, D.J.DeFrees, J.A.Pople J.Chem.Phys. 77, 3654-3665(1982). 23) Unpublished, copied out of GAUSSIAN82. 24) For Li and Be, 4-31G is actually a 5-21G expansion. 25) V.A.Rassolov, J.A.Pople, M.A.Ratner, T.L.Windus J.Chem.Phys. 109, 1223-1229(1998) 26) A.V.Mitin, J.Baker, P.Pulay J.Chem.Phys. 118, 7775-7782(2003) - not in GAMESS. 27) V.A.Rassolov, M.A.Ratner, J.A.Pople, P.C.Redfern, L.A.Curtiss J.Comput.Chem. 22, 976-984(2001). Note that reference 27 renames basis sets published earlier as "6-31G*" in references 25 and 32. GAMESS was changed to use the 6-31G* basis sets from reference 27 for K, Ca, and Ga-Kr in September 2006. Sc-Zn remain those of ref. 25. Extended basis sets --> 6-311G 28) R.Krishnan, J.S.Binkley, R.Seeger, J.A.Pople J.Chem.Phys. 72, 650-654(1980). --> valence double zeta "DZV" sets: "DH" basis - DZV for H, Li-Ne, Al-Ar 30) T.H.Dunning, Jr., P.J.Hay Chapter 1 in "Methods of Electronic Structure Theory", H.F.Schaefer III, Ed. Plenum Press, N.Y. 1977, pp 1-27. Note that GAMESS uses inner/outer scale factors of 1.2 and 1.15 for DH's hydrogen (since at least 1983). To get Thom's usual basis, scaled 1.2 throughout: HYDROGEN 1.0 x, y, z DH 0 1.2 1.2 DZV for K,Ca 31) J.-P.Blaudeau, M.P.McGrath, L.A.Curtiss, L.Radom J.Chem.Phys. 107, 5016-5021(1997) "BC" basis - DZV for Ga-Kr 32) R.C.Binning, Jr., L.A.Curtiss J.Comput.Chem. 11, 1206-1216(1990) Note, this basis set is available only by GBASIS=DZV, since it is no longer considered to be the 6-31G substitute. --> valence triple zeta "TZV" sets: TZV for H,Li-Ne 40) T.H. Dunning, J.Chem.Phys. 55 (1971) 716-723. TZV for Na-Ar - also known as the "MC" basis 41) A.D.McLean, G.S.Chandler J.Chem.Phys. 72,5639-5648(1980). TZV for K,Ca 42) A.J.H. Wachters, J.Chem.Phys. 52 (1970) 1033-1036. (see Table VI, Contraction 3). TZV for Sc-Zn (taken from HONDO 7) This is Wachters' (14s9p5d) basis (ref 42) contracted to (10s8p3d) with the following modifications 1. the most diffuse s removed; 2. additional s spanning 3s-4s region; 3. two additional p functions to describe the 4p; 4. (6d) contracted to (411) from ref 43, except for Zn where Wachter's (5d)/[41] and Hay's diffuse d are used. 43) A.K. Rappe, T.A. Smedley, and W.A. Goddard III, J.Phys.Chem. 85 (1981) 2607-2611 Valence only basis sets (ECPs and MCPs) SBKJC ECP, these are -31G splits for main group, bigger for transition metals (available Li-Rn): 50) W.J.Stevens, H.Basch, M.Krauss J.Chem.Phys. 81, 6026-6033 (1984) 51) W.J.Stevens, M.Krauss, H.Basch, P.G.Jasien Can.J.Chem. 70, 612-630 (1992) 52) T.R.Cundari, W.J.Stevens J.Chem.Phys. 98, 5555-5565(1993) HW ECP, these are -21 splits (sp exponents not shared) transition metals (not built in at present, although they will work if you type them in): 53) P.J.Hay, W.R.Wadt J.Chem.Phys. 82, 270-283 (1985) main group (available Na-Xe) 54) W.R.Wadt, P.J.Hay J.Chem.Phys. 82, 284-298 (1985) see also 55) P.J.Hay, W.R.Wadt J.Chem.Phys. 82, 299-310 (1985) Model core potentials (MCP): To understand the model core potential formalism itself, see the review articles S.Huzinaga Can.J.Chem. 73, 619-628(1995) M.Klobukowski, S.Huzinaga, Y.Sakai, in Computational Chemistry: Reviews of current trends, volume 3, pp 49-74, edited by J.Leszczynski, World Scientific, Singapore, 1999. The MCP-xZP,MCP-AxZP,MCP-CxZP, MCP-ACxZP families: 60) Y.Sakai, E.Miyoshi, M.Klobukowski, S.Huzinaga, "Model potentials for main group elements", J. Chem. Phys. 106, 8084-8092 (1997). 61) E. Miyoshi, Y. Sakai, K. Tanaka, M. Masamura, "Relativistic dsp-model core potentials for main group elements in the fourth, fifth and sixth row and their applications", J. Mol. Struct. (THEOCHEM) 451, 73-79 (1998) 62) Y. Sakai, E. Miyoshi, H. Tatewaki, "Model core potentials for the lanthanides", J. Mol. Struct. (THEOCHEM) 451, 143-150 (1998) 63) E.Miyoshi, H.Mori, R.Hirayama, Y.Osanai, T.Noro, H.Honda, M.Klobukowski "Compact and efficient basis sets of s- and p-block elements for model core potential method" J.Chem.Phys. 122, 074104/1-8(2005) 64) M. Sekiya, T. Noro, Y. Osanai, E. Miyoshi, T. Koga, "Relativistic Correlating Basis Sets for Lanthanide Atoms from Ce to Lu", J. Comput. Chem. 27, 463 (2006) 65) H. Anjima, S. Tsukamoto, H. Mori, H. Mine, M. Klobukowski, E. Miyoshi, "Revised Model Core Potentials of s-Block Elements", J. Comput. Chem. 28, 2424-2430 (2007) 66) Y. Osanai, M. S. Mon, T. Noro, H. Mori, H. Nakashima, M. Klobukowski, E. Miyoshi, "Revised model core potentials for first-row transition-metal atoms from Sc to Zn", Chem. Phys. Lett. 452, 210-214 (2008) 67) Y. Osanai, E. Soejima, T. Noro, H. Mori, M. Ma San, M. Klobukowski, E. Miyoshi, "Revised model core potentials for second-row transition metal atoms from Y to Cd", Chem. Phys. Lett. 463, 230-234 (2008) 68) H. Mori, K. Ueno-Noto, Y. Osanai, T. Noro, T. Fujiwara, M. Klobukowski, E. Miyoshi, "Revised model core potentials for third-row transition-metal atoms from Lu to Hg", Chem. Phys. Lett. 476, 317-322 (2009) the iMCP (improved model core families) are: 71) C.C.Lovallo, M.Klobukowski J.Comput.Chem. 24, 1009-10015(2003) 72) C.C.Lovallo, M.Klobukowski J.Comput.Chem. 25, 1206-1213(2004) the ZFK (Zeng, Fedorov, Klobukowski) family for sp block: 72) T.Zeng, D.G.Fedorov, M. Klobukowski J.Chem.Phys. 133, 114107/1-11 (2010) For additional information, see also T.Zeng, D.G.Fedorov, M. Klobukowski J.Chem.Phys. 131, 124109/1-17 (2009) T.Zeng, D.G.Fedorov, M.Klobukowski J.Chem.Phys. 132, 074102/1-15 (2010) The MCP family, built into the $DATA group only: 75) Y.Sakai, E.Miyoshi, M.Klobukowski, S.Huzinaga, "Model potentials for molecular calculations. I. The sd-MP set for transition metal atoms Sc-Hg", J. Comput. Chem. 8 (1987) 226-255. 76) Y.Sakai, E.Miyoshi, M.Klobukowski, S.Huzinaga, "Model potentials for molecular calculations. II. The spd-MP set for transition metal atoms Sc-Hg", J. Comput. Chem. 8 (1987) 256-264. 77) Y.Sakai, E.Miyoshi, M.Klobukowski, S.Huzinaga, "Model potentials for main group elements", J. Chem. Phys. 106 (1997) 8084-8092. 78) E.Miyoshi, Y.Sakai, K.Tanaka, M.Masamura "Relativistic dsp-Model Core Potentials for Main Group Elements in the 4th, 5th, and 6th-Row and Applications" J. Mol. Struct. (Theochem), 451 (1998) 73-79. 79) Y.Sakai, E.Miyoshi, H.Tatewaki "Model Core Potentials for the Lanthanides" J. Mol. Struct. (Theochem), 451 (1998) 143-150. Systematic basis set families: Polarization Consistent basis sets (PCseg-n): The segmented contractions which are internally stored in GAMESS are described in this paper: 81) F.Jensen, J.Chem.Theory Comp. 10, 1074-1085(2014) Papers describing the older general contractions are: F.Jensen J.Chem.Phys. 115, 9113-9125(2001). erratum J.Chem.Phys. 116, 3502(2002). F.Jensen J.Chem.Phys. 116, 7372-7379(2002). F.Jensen J.Chem.Phys. 117, 9234-9240(2002). F.Jensen J.Chem.Phys. 118, 2459-2463(2003). F.Jensen, T.Helgaker J.Chem.Phys. 121, 3463-3470(2004). F.Jensen, J. Phys. Chem. A 111, 11198-11204(2007) F.Jensen, J. Chem. Phys. 136, 114107(2012) F.Jensen, J. Chem. Phys. 138, 014107(2013) Correlation Consistent bases (CCn, ACCn, etc.): The GAMESS keyword and official names for these "Dunning- style" basis sets are, CCn=cc-pVnZ, ACCn=aug-cc-pVnZ, n=D,T,Q,5,... CCnC=cc-pCVnZ, ACCnC=aug-cc-pCVnZ, CCnWC=cc-pwCVnZ, ACCnWC=aug-cc-pwCVnZ (w=?omega?). See $BASIS for important information about Al-Ar?s bases, where the GAMESS keyword invokes ?tight d? (n+d) sets. Please see the Pacific Northwest National Laboratory web page http://www.emsl.pnl.gov/forms/basisform.html for references to these basis sets. Kirk Peterson's very thorough bibliography can be found at http://tyr0.chem.wsu.edu/~kipeters/basis-bib.html Sapporo (SPK) basis set family first, the non-relativistic valence sets, S1. H.Tatewaki, T.Koga J.Chem.Phys. 104, 8493(1996) S2. H.Tatewaki, T.Koga, H.Takashima Theoret.Chem.Acc. 96, 243(1997) S3. T.Koga, H.Tatewaki, Y.Satoh Theoret.Chem.Acc. 102, 105(1999) S4. T.Koga, S.Yamamoto, T.Shimazaki, H.Tatewaki, Theoret.Chem.Acc. 108, 41(2002) then, the relativistic valence sets, S6. T.Noro, M.Sekiya, T.Koga, S.L.Saito Chem.Phys.Lett. 481, 229-233(2009) core/valence relativistic and non-relativistic: S7. T.Noro, M.Sekiya, T.Koga (main group) Theoret.Chem.Acc. 131, 1124(2012) S8. M.Sekiya, T.Noro, T.Koga, T.Shimuzaki (lanthanides) Theoret.Chem.Acc. 131, 1247(2012) Karlsruhe basis sets (group of Reinhart Ahlrichs) 91) A.Schaefer, H.Horn, R.Ahlrichs J.Chem. Phys. 97,2571 (1992). 92) A.Schaefer, C.Huber, R.Ahlrichs J.Chem. Phys. 100, 5829 (1994). Polarization exponents: STO-NG* 100) J.B.Collins, P. von R. Schleyer, J.S.Binkley, J.A.Pople J.Chem.Phys. 64, 5142-5151(1976). 3-21G*. See also reference 12. 101) W.J.Pietro, M.M.Francl, W.J.Hehre, D.J.DeFrees, J.A. Pople, J.S.Binkley J.Am.Chem.Soc. 104,5039-5048(1982) 6-31G* and 6-31G**. See also reference 22 above. 102) P.C.Hariharan, J.A.Pople Theoret.Chim.Acta 28, 213-222(1973) multiple polarization, and f functions 103) M.J.Frisch, J.A.Pople, J.S.Binkley J.Chem.Phys. 80, 3265-3269 (1984). Anion diffuse functions: 3-21+G, 3-21++G, etc. 105) T.Clark, J.Chandrasekhar, G.W.Spitznagel, P. von R. Schleyer J.Comput.Chem. 4, 294-301(1983) 106) G.W.Spitznagel, Diplomarbeit, Erlangen, 1982. ------------ STO-NG* means d orbitals are used on third row atoms only. The original paper (ref 100) suggested z=0.09 for Na and Mg, and z=0.39 for Al-Cl. We prefer to use the same exponents as are used in 3-21G* and 6-31G*, so we know we're looking at changes in the sp basis, not the d exponent. 3-21G* means d orbitals on main group elements in the third and higher periods. Not defined for the transition metals, where there are p's already in the basis. Except for alkalis and alkali earths, the 4th and 5th row zetas are from Huzinaga, et al. (ref 9). The exponents are normally the same as for 6-31G*. 6-31G* means d orbitals on second and third row atoms. We use Mark Gordon's z=0.395 for Silicon, as well as his fully optimized sp basis (ref 21). This is often written 6-31G(d) today. For the first row transition metals, the * means an f function is added. The transition metal 3d 6-31G orbital is NOT of triple zeta quality, and thus is probably not very accurate. 6-31G** means the same as 6-31G*, except that p functions are added on hydrogens. This is often written 6-31G(d,p) today. 6-311G** means p orbitals on H, and d orbitals elsewhere. The exponents were derived from correlated atomic states, and so are considerably tighter than the polarizing functions used in 6-31G**, etc. This is often written 6-311G(d,p) today. The exponents for 6-31G* for C-F are disturbing, in that each atom has exactly the same value. Dunning and Hay (ref 30) have recommended a better set of exponents for second row atoms and a slightly different value for H. 2p, 3p, 2d, 3p polarization sets are usually thought of as arising from applying splitting factors to the 1p and 1d values. For example, SPLIT2=2.0, 0.5 means to double and halve the single value. The default values for SPLIT2 and SPLIT3 are taken from reference 103, and were derived with correlation in mind. The SPLIT2 values often produce a higher (!) HF energy than the singly polarized run, because the exponents are split too widely. SPLIT2=0.4,1.4 will always lower the SCF energy (the values are the unpublished personal preference of MWS), and for SPLIT3 we might suggest 3.0,1.0,1/3. With all this as background, we are ready to present the tables of polarization exponents that are built into GAMESS. Please note that the names associated with each column are only generally descriptive. The column marked "COMMON" is obtained from both Pople (mostly his 6-31G, but using Gordon's value for Silicon) and Huzinaga (from the "green book"). The exponents for K-Kr under "Dunning" are from Curtiss, et al., not Thom Dunning, and so on. The exponents are for d functions unless otherwise indicated. Polarization exponents, chosen by POLAR= in $BASIS: COMMON POPN31 POPN311 DUNNING HUZINAGA HONDO7 ------ ------ ------- ------- -------- ------ H 1.1(p) 0.75(p) 1.0(p) 1.0(p) 1.0(p) He 1.1(p) 0.75(p) 1.0(p) 1.0(p) 1.0(p) Li 0.2 0.200 0.076(p) Be 0.4 0.255 0.164(p) 0.32 B 0.6 0.401 0.70 0.388 0.50 C 0.8 0.626 0.75 0.600 0.72 N 0.8 0.913 0.80 0.864 0.98 O 0.8 1.292 0.85 1.154 1.28 F 0.8 1.750 0.90 1.496 1.62 Ne 0.8 2.304 1.00 1.888 2.00 Na 0.175 0.061(p) 0.157 Mg 0.175 0.101(p) 0.234 Al 0.325 0.198 0.311 Si 0.395 0.262 0.388 P 0.55 0.340 0.465 S 0.65 0.421 0.542 Cl 0.75 0.514 0.619 Ar 0.85 0.617 0.696 K 0.2 0.04485 0.260 0.039(p) Ca 0.2 0.0502 0.229 0.059(p) Sc-Zn N/A 0.8(f) N/A N/A N/A N/A Ga 0.207 0.2289 0.141 Ge 0.246 0.2772 0.202 As 0.293 0.3277 0.273 Se 0.338 0.3810 0.315 Br 0.389 0.4366 0.338 Kr 0.443 0.4948 0.318 Rb 0.11 0.034(p) Sr 0.11 0.048(p) A blank means the value equals the "COMMON" column. Common d polarization for all sets ("green book"): In Sn Sb Te I Xe 0.160 0.183 0.211 0.237 0.266 0.297 Tl Pb Bi Po At Rn 0.146 0.164 0.185 0.204 0.225 0.247 see f exponents on next page... f polarization functions, from reference 103: Li Be B C N O F Ne 0.15 0.26 0.50 0.80 1.00 1.40 1.85 2.50 Na Mg Al Si P S Cl Ar 0.15 0.20 0.25 0.32 0.45 0.55 0.70 -- Anions usually require diffuse basis functions to properly represent their spatial diffuseness. The use of diffuse sp shells on atoms in the second and third rows is denoted by a + sign, also adding diffuse s functions on hydrogen is symbolized by ++. These designations can be applied to any of the Pople bases, e.g. 3-21+G, 3-21+G*, 6-31++G**. The following exponents are for L shells, except for H. For H-F, they are taken from ref 105. For Na-Cl, they are taken directly from reference 106. These values may be found in footnote 13 of reference 103. For Ga-Br, In-I, and Tl-At these were optimized for the atomic ground state anion, using ROHF with a flexible ECP basis set, by Ted Packwood at NDSU. H 0.0360 Li Be B C N O F 0.0074 0.0207 0.0315 0.0438 0.0639 0.0845 0.1076 Na Mg Al Si P S Cl 0.0076 0.0146 0.0318 0.0331 0.0348 0.0405 0.0483 Ga Ge As Se Br 0.0205 0.0222 0.0287 0.0318 0.0376 In Sn Sb Te I 0.0223 0.0231 0.0259 0.0306 0.0368 Tl Pb Bi Po At 0.0170 0.0171 0.0215 0.0230 0.0294 Additional information about diffuse functions and also Rydberg type exponents can be found in reference 30. The following atomic energies are UHF (RHF on 1-S states), p orbitals are not symmetry equivalent, using the default scale factors. They may be useful in picking a basis of the desired accuracy. Atom state STO-2G STO-3G 3-21G 6-31G H 2-S -.454397 -.466582 -.496199 -.498233 He 1-S -2.702157 -2.807784 -2.835680 -2.855160 Li 2-S -7.070809 -7.315526 -7.381513 -7.431236 Be 1-S -13.890237 -14.351880 -14.486820 -14.566764 B 2-P -23.395284 -24.148989 -24.389762 -24.519492 C 3-P -36.060274 -37.198393 -37.481070 -37.677837 N 4-S -53.093007 -53.719010 -54.105390 -54.385008 O 3-P -71.572305 -73.804150 -74.393657 -74.780310 F 2-P -95.015084 -97.986505 -98.845009 -99.360860 Ne 1-S -122.360485 -126.132546 -127.803825 -128.473877 Na 2-S -155.170019 -159.797148 -160.854065 -161.841425 Mg 1-S -191.507082 -197.185978 -198.468103 -199.595219 Al 2-P -233.199965 -239.026471 -240.551046 -241.854186 Si 3-P -277.506857 -285.563052 -287.344431 -288.828598 P 4-S -327.564244 -336.944863 -339.000079 -340.689008 S 3-P -382.375012 -393.178951 -395.551336 -397.471414 Cl 2-P -442.206260 -454.546015 -457.276552 -459.442939 Ar 1-S -507.249273 -521.222881 -524.342962 -526.772151 Atom state DH 6-311G MC SCF limit* H 2-S -.498189 -.499810 -- -0.5 He 1-S -- -2.859895 -- -2.861680 Li 2-S -7.431736 -7.432026 -- -7.432727 Be 1-S -14.570907 -14.571874 -- -14.573023 B 2-P -24.526601 -24.527020 -- -24.529061 C 3-P -37.685571 -37.686024 -- -37.688619 N 4-S -54.397260 -54.397980 -- -54.400935 O 3-P -74.802707 -74.802496 -- -74.809400 F 2-P -99.395013 -99.394158 -- -99.409353 Ne 1-S -128.522354 -128.522553 -- -128.547104 Na 2-S -- -- -161.845587 -161.858917 Mg 1-S -- -- -199.606558 -199.614636 Al 2-P -241.855079 -- -241.870014 -241.876699 Si 3-P -288.829617 -- -288.847782 -288.854380 P 4-S -340.689043 -- -340.711346 -340.718798 S 3-P -397.468667 -- -397.498023 -397.504910 Cl 2-P -459.435938 -- -459.473412 -459.482088 Ar 1-S -- -- -526.806626 -526.817528 * M.W.Schmidt and K.Ruedenberg, J.Chem.Phys. 71, 3951-3962(1979). These are ROHF energies in Kh symmetry. H-Xe can be found in Phys.Rev.A 46, 3691-3696(1992).