Basis Set References
 
     An excellent review of the relationship between the 
atomic basis used, and the accuracy with which various 
molecular properties will be computed is:
E.R.Davidson, D.Feller  Chem.Rev. 86, 681-696(1986).
 
STO-NG      H-Ne        Ref. 1 and 2
            Na-Ar,      Ref. 2 and 3 **
            K,Ca,Ga-Kr  Ref. 4
            Rb,Sr,In-Xe Ref. 5
            Sc-Zn,Y-Cd  Ref. 6
 
1) W.J.Hehre, R.F.Stewart, J.A.Pople
   J.Chem.Phys. 51, 2657-2664(1969).
2) W.J.Hehre, R.Ditchfield, R.F.Stewart, J.A.Pople
   J.Chem.Phys. 52, 2769-2773(1970).
3) M.S.Gordon, M.D.Bjorke, F.J.Marsh, M.S.Korth
   J.Am.Chem.Soc. 100, 2670-2678(1978).
   ** the valence scale factors for Na-Cl are taken
      from this paper, rather than the "official"
      Pople values in Ref. 2.
4) W.J.Pietro, B.A.Levi, W.J.Hehre, R.F.Stewart,
   Inorg.Chem. 19, 2225-2229(1980).
5) W.J.Pietro, E.S.Blurock, R.F.Hout,Jr., W.J.Hehre, D.J.
   DeFrees, R.F.Stewart  Inorg.Chem. 20, 3650-3654(1980).
6) W.J.Pietro, W.J.Hehre J.Comput.Chem. 4, 241-251(1983).
 
 
 
MINI/MIDI    H-Xe       Ref. 9
 
9) "Gaussian Basis Sets for Molecular Calculations"
   S.Huzinaga, J.Andzelm, M.Klobukowski, E.Radzio-Andzelm,
   Y.Sakai, H.Tatewaki   Elsevier, Amsterdam, 1984.
This book is referred to in certain circles as "the green 
book" based on the color of its cover.
 
    The MINI bases are three Gaussian expansions of each 
atomic orbital.  The exponents and contraction coefficients 
are optimized for each element, and s and p exponents are 
not constrained to be equal.  As a result these bases give 
much lower energies than does STO-3G.  The valence MINI 
orbitals of main group elements are scaled by factors 
optimized by John Deisz at North Dakota State University.  
Transition metal MINI bases are not scaled.  The MIDI bases 
are derived from the MINI sets by floating the outermost 
primitive in each valence orbitals, and renormalizing the 
remaining 2 gaussians.  MIDI bases are not scaled by 
GAMESS.  The transition metal bases are taken from the 
lowest SCF terms in the s**1,d**n
configurations.
 
3-21G       H-Ne           Ref. 10     (also 6-21G)
            Na-Ar          Ref. 11     (also 6-21G)
K,Ca,Ga-Kr,Rb,Sr,In-Xe     Ref. 12
            Sc-Zn          Ref. 13
            Y-Cd           Ref. 14
 
10) J.S.Binkley, J.A.Pople, W.J.Hehre
    J.Am.Chem.Soc. 102, 939-947(1980).
11) M.S.Gordon, J.S.Binkley, J.A.Pople, W.J.Pietro,
    W.J.Hehre  J.Am.Chem.Soc. 104, 2797-2803(1982).
12) K.D.Dobbs, W.J.Hehre  J.Comput.Chem. 7,359-378(1986)
13) K.D.Dobbs, W.J.Hehre  J.Comput.Chem. 8,861-879(1987)
14) K.D.Dobbs, W.J.Hehre  J.Comput.Chem. 8,880-893(1987)
 
 
 
N-31G   references for  4-31G         5-31G        6-31G
            H            15            15           15
            He           23            23           23
            Li           19,24                      19
            Be           20,24                      20
            B            17                         19
            C-F          15            16           16
            Ne           23                         23
            Na-Al                                   22
            Si                                      21 **
            P-Cl         18                         22
            Ar                                      22
            K-Kr                                    26
 
15) R.Ditchfield, W.J.Hehre, J.A.Pople
    J.Chem.Phys. 54, 724-728(1971).
16) W.J.Hehre, R.Ditchfield, J.A.Pople
    J.Chem.Phys. 56, 2257-2261(1972).
17) W.J.Hehre, J.A.Pople J.Chem.Phys. 56, 4233-4234(1972).
18) W.J.Hehre, W.A.Lathan J.Chem.Phys. 56,5255-5257(1972).
19) J.D.Dill, J.A.Pople J.Chem.Phys. 62, 2921-2923(1975).
20) J.S.Binkley, J.A.Pople J.Chem.Phys. 66, 879-880(1977).
21) M.S.Gordon  Chem.Phys.Lett. 76, 163-168(1980)
    ** - Note that the built in 6-31G basis for Si is
         not that given by Pople in reference 22.
         The Gordon basis gives a better wavefunction,
         for a ROHF calculation in full atomic (Kh)
         symmetry,
         6-31G      Energy       virial
         Gordon   -288.828573   1.999978
         Pople    -288.828405   2.000280
         See the input examples for how to run in Kh.
22) M.M.Francl, W.J.Pietro, W.J.Hehre, J.S.Binkley,
    M.S.Gordon, D.J.DeFrees, J.A.Pople
    J.Chem.Phys. 77, 3654-3665(1982).
23) Unpublished, copied out of GAUSSIAN82.
24) For Li and Be, 4-31G is actually a 5-21G expansion.
25) V.A.Rassolov, J.A.Pople, M.A.Ratner, T.L.Windus
      J.Chem.Phys. 109, 1223-1229(1998)
26) A.V.Mitin, J.Baker, P.Pulay
    J.Chem.Phys. 118, 7775-7782(2003) - not in GAMESS.
27) V.A.Rassolov, M.A.Ratner, J.A.Pople, P.C.Redfern,
    L.A.Curtiss   J.Comput.Chem.  22, 976-984(2001).
Note that reference 27 renames basis sets published earlier 
as "6-31G*" in references 25 and 32.  GAMESS was changed to 
use the 6-31G* basis sets from reference 27 for K, Ca, and 
Ga-Kr in September 2006.  Sc-Zn remain those of ref. 25.
 
Extended basis sets
 
--> 6-311G

28) R.Krishnan, J.S.Binkley, R.Seeger, J.A.Pople
    J.Chem.Phys. 72, 650-654(1980).
 
--> valence double zeta "DZV" sets:
 
    "DH" basis - DZV for H, Li-Ne, Al-Ar
30) T.H.Dunning, Jr., P.J.Hay  Chapter 1 in "Methods of
    Electronic Structure Theory", H.F.Schaefer III, Ed.
    Plenum Press, N.Y. 1977, pp 1-27.
    Note that GAMESS uses inner/outer scale factors of
    1.2 and 1.15 for DH's hydrogen (since at least 1983).
    To get Thom's usual basis, scaled 1.2 throughout:
        HYDROGEN   1.0   x, y, z
           DH  0  1.2   1.2
    DZV for K,Ca
31) J.-P.Blaudeau, M.P.McGrath, L.A.Curtiss, L.Radom
    J.Chem.Phys. 107, 5016-5021(1997)
    "BC" basis - DZV for Ga-Kr
32) R.C.Binning, Jr., L.A.Curtiss
    J.Comput.Chem. 11, 1206-1216(1990)
Note, this basis set is available only by GBASIS=DZV, since 
it is no longer considered to be the 6-31G substitute.
 
 
--> valence triple zeta "TZV" sets:
 
    TZV for H,Li-Ne
40) T.H. Dunning, J.Chem.Phys. 55 (1971) 716-723.
    TZV for Na-Ar - also known as the "MC" basis
41) A.D.McLean, G.S.Chandler
    J.Chem.Phys. 72,5639-5648(1980).
    TZV for K,Ca
42) A.J.H. Wachters, J.Chem.Phys. 52 (1970) 1033-1036.
    (see Table VI, Contraction 3).
    TZV for Sc-Zn (taken from HONDO 7)
This is Wachters' (14s9p5d) basis (ref 42) contracted
to (10s8p3d) with the following modifications
       1. the most diffuse s removed;
       2. additional s spanning 3s-4s region;
       3. two additional p functions to describe the 4p;
       4. (6d) contracted to (411) from ref 43,
          except for Zn where Wachter's (5d)/[41]
          and Hay's diffuse d are used.
43) A.K. Rappe, T.A. Smedley, and W.A. Goddard III,
    J.Phys.Chem. 85 (1981) 2607-2611
 
Valence only basis sets (ECPs and MCPs)
 
SBKJC ECP, these are -31G splits for main group, bigger for 
transition metals (available Li-Rn):
50) W.J.Stevens, H.Basch, M.Krauss
        J.Chem.Phys. 81, 6026-6033 (1984)
51) W.J.Stevens, M.Krauss, H.Basch, P.G.Jasien
        Can.J.Chem. 70, 612-630 (1992)
52) T.R.Cundari, W.J.Stevens  
        J.Chem.Phys. 98, 5555-5565(1993)
 
HW ECP, these are -21 splits (sp exponents not shared)
    transition metals (not built in at present, although
    they will work if you type them in):
53) P.J.Hay, W.R.Wadt  J.Chem.Phys.  82, 270-283 (1985)
    main group (available Na-Xe)
54) W.R.Wadt, P.J.Hay  J.Chem.Phys.  82, 284-298 (1985)
    see also
55) P.J.Hay, W.R.Wadt  J.Chem.Phys.  82, 299-310 (1985)

Model core potentials (MCP):

To understand the model core potential formalism itself, 
see the review articles
   S.Huzinaga   Can.J.Chem.  73, 619-628(1995)
   M.Klobukowski, S.Huzinaga, Y.Sakai, in Computational 
Chemistry: Reviews of current trends, volume 3, pp 49-74, 
edited by J.Leszczynski, World Scientific, Singapore, 1999.

The MCP-xZP,MCP-AxZP,MCP-CxZP, MCP-ACxZP families:
60) Y.Sakai, E.Miyoshi, M.Klobukowski, S.Huzinaga,
    "Model potentials for main group elements",
    J. Chem. Phys. 106, 8084-8092 (1997).
61) E. Miyoshi, Y. Sakai, K. Tanaka, M. Masamura,
    "Relativistic dsp-model core potentials for main group
    elements in the fourth, fifth and sixth row
    and their applications",
    J. Mol. Struct. (THEOCHEM)  451, 73-79 (1998)
62) Y. Sakai, E. Miyoshi, H. Tatewaki,
    "Model core potentials for the lanthanides",
    J. Mol. Struct. (THEOCHEM)  451, 143-150 (1998)
63) E.Miyoshi, H.Mori, R.Hirayama, Y.Osanai, T.Noro,
    H.Honda, M.Klobukowski
    "Compact and efficient basis sets of s- and p-block
    elements for model core potential method"
    J.Chem.Phys. 122, 074104/1-8(2005)
64) M. Sekiya, T. Noro, Y. Osanai, E. Miyoshi, T. Koga,
    "Relativistic Correlating Basis Sets for Lanthanide
    Atoms from Ce to Lu",
    J. Comput. Chem. 27, 463 (2006)
65) H. Anjima, S. Tsukamoto, H. Mori, H. Mine,
    M. Klobukowski, E. Miyoshi,
    "Revised Model Core Potentials of s-Block Elements",
    J. Comput. Chem. 28, 2424-2430 (2007)
66) Y. Osanai, M. S. Mon, T. Noro, H. Mori,
    H. Nakashima, M. Klobukowski, E. Miyoshi,
    "Revised model core potentials for first-row
    transition-metal atoms from Sc to Zn",
    Chem. Phys. Lett. 452, 210-214 (2008)
67) Y. Osanai, E. Soejima, T. Noro, H. Mori, M. Ma San,
    M. Klobukowski, E. Miyoshi,
    "Revised model core potentials for second-row
    transition metal atoms from Y to Cd",
    Chem. Phys. Lett. 463, 230-234 (2008)
68) H. Mori, K. Ueno-Noto, Y. Osanai, T. Noro, T. Fujiwara,
    M. Klobukowski, E. Miyoshi,
    "Revised model core potentials for third-row
    transition-metal atoms from Lu to Hg",
    Chem. Phys. Lett. 476, 317-322 (2009)

the iMCP (improved model core families) are:
71) C.C.Lovallo, M.Klobukowski
    J.Comput.Chem. 24, 1009-10015(2003)
72) C.C.Lovallo, M.Klobukowski
    J.Comput.Chem. 25, 1206-1213(2004)

the ZFK (Zeng, Fedorov, Klobukowski) family for sp block:
72) T.Zeng, D.G.Fedorov, M. Klobukowski
    J.Chem.Phys. 133, 114107/1-11 (2010)
For additional information, see also
  T.Zeng, D.G.Fedorov, M. Klobukowski
    J.Chem.Phys. 131, 124109/1-17 (2009)
  T.Zeng, D.G.Fedorov, M.Klobukowski
    J.Chem.Phys. 132, 074102/1-15 (2010)

The MCP family, built into the $DATA group only:
75) Y.Sakai, E.Miyoshi, M.Klobukowski, S.Huzinaga,
    "Model potentials for molecular calculations. I.
    The sd-MP set for transition metal atoms Sc-Hg",
    J. Comput. Chem. 8 (1987) 226-255.
76) Y.Sakai, E.Miyoshi, M.Klobukowski, S.Huzinaga,
    "Model potentials for molecular calculations. II.
    The spd-MP set for transition metal atoms Sc-Hg",
    J. Comput. Chem. 8 (1987) 256-264.
77) Y.Sakai, E.Miyoshi, M.Klobukowski, S.Huzinaga,
    "Model potentials for main group elements",
    J. Chem. Phys. 106 (1997) 8084-8092.
78) E.Miyoshi, Y.Sakai, K.Tanaka, M.Masamura
    "Relativistic dsp-Model Core Potentials for Main Group
    Elements in the 4th, 5th, and 6th-Row and Applications"
    J. Mol. Struct. (Theochem), 451 (1998) 73-79.
79) Y.Sakai, E.Miyoshi, H.Tatewaki
    "Model Core Potentials for the Lanthanides"
    J. Mol. Struct. (Theochem), 451 (1998) 143-150.


Systematic basis set families:

     Polarization Consistent basis sets (PCseg-n):

The segmented contractions which are internally stored in 
GAMESS are described in this paper:
  81) F.Jensen, J.Chem.Theory Comp. 10, 1074-1085(2014)
Papers describing the older general contractions are:
  F.Jensen  J.Chem.Phys. 115, 9113-9125(2001).
    erratum J.Chem.Phys. 116, 3502(2002).
  F.Jensen  J.Chem.Phys. 116, 7372-7379(2002).
  F.Jensen  J.Chem.Phys. 117, 9234-9240(2002).
  F.Jensen  J.Chem.Phys. 118, 2459-2463(2003).
  F.Jensen, T.Helgaker J.Chem.Phys. 121, 3463-3470(2004).
  F.Jensen, J. Phys. Chem. A 111, 11198-11204(2007)
  F.Jensen, J. Chem. Phys. 136, 114107(2012)
  F.Jensen, J. Chem. Phys. 138, 014107(2013)

     Correlation Consistent bases (CCn, ACCn, etc.):

The GAMESS keyword and official names for these "Dunning-
style" basis sets are,
      CCn=cc-pVnZ,     ACCn=aug-cc-pVnZ,    n=D,T,Q,5,...
     CCnC=cc-pCVnZ,   ACCnC=aug-cc-pCVnZ,
    CCnWC=cc-pwCVnZ, ACCnWC=aug-cc-pwCVnZ   (w=?omega?).
See $BASIS for important information about Al-Ar?s bases, 
where the GAMESS keyword invokes ?tight d? (n+d) sets.

Please see the Pacific Northwest National Laboratory web 
page http://www.emsl.pnl.gov/forms/basisform.html for 
references to these basis sets.  Kirk Peterson's very 
thorough bibliography can be found at
   http://tyr0.chem.wsu.edu/~kipeters/basis-bib.html

     Sapporo (SPK) basis set family

        first, the non-relativistic valence sets,
S1. H.Tatewaki, T.Koga  J.Chem.Phys. 104, 8493(1996)
S2. H.Tatewaki, T.Koga, H.Takashima
    Theoret.Chem.Acc. 96, 243(1997)
S3. T.Koga, H.Tatewaki, Y.Satoh
    Theoret.Chem.Acc. 102, 105(1999)
S4. T.Koga, S.Yamamoto, T.Shimazaki, H.Tatewaki,
    Theoret.Chem.Acc. 108, 41(2002)
        then, the relativistic valence sets,
S6. T.Noro, M.Sekiya, T.Koga, S.L.Saito
    Chem.Phys.Lett. 481, 229-233(2009)
        core/valence relativistic and non-relativistic:
S7. T.Noro, M.Sekiya, T.Koga   (main group)
    Theoret.Chem.Acc. 131, 1124(2012)
S8. M.Sekiya, T.Noro, T.Koga, T.Shimuzaki (lanthanides)
    Theoret.Chem.Acc. 131, 1247(2012)

     Karlsruhe basis sets (group of Reinhart Ahlrichs)

91) A.Schaefer, H.Horn, R.Ahlrichs
    J.Chem. Phys. 97,2571 (1992).
92) A.Schaefer, C.Huber, R.Ahlrichs
    J.Chem. Phys. 100, 5829 (1994).


Polarization exponents:

     STO-NG*
100) J.B.Collins, P. von R. Schleyer, J.S.Binkley,
     J.A.Pople  J.Chem.Phys. 64, 5142-5151(1976).
 
     3-21G*.   See also reference 12.
101) W.J.Pietro, M.M.Francl, W.J.Hehre, D.J.DeFrees,  J.A.
     Pople, J.S.Binkley J.Am.Chem.Soc. 104,5039-5048(1982)
 
     6-31G* and 6-31G**.   See also reference 22 above.
102) P.C.Hariharan, J.A.Pople
     Theoret.Chim.Acta 28, 213-222(1973)

     multiple polarization, and f functions
103) M.J.Frisch, J.A.Pople, J.S.Binkley J.Chem.Phys.
     80, 3265-3269 (1984).

Anion diffuse functions:
 
     3-21+G, 3-21++G, etc.
105) T.Clark, J.Chandrasekhar, G.W.Spitznagel, P. von R.
     Schleyer J.Comput.Chem. 4, 294-301(1983)
106) G.W.Spitznagel, Diplomarbeit, Erlangen, 1982.

                   ------------

STO-NG*  means d orbitals are used on third row atoms only.
         The original paper (ref 100) suggested z=0.09 for
         Na and Mg, and z=0.39 for Al-Cl.
         We prefer to use the same exponents as are used
         in 3-21G* and 6-31G*, so we know we're looking
         at changes in the sp basis, not the d exponent.
 
3-21G*   means d orbitals on main group elements in the
         third and higher periods.  Not defined for the
         transition metals, where there are p's already
         in the basis.  Except for alkalis and alkali
         earths, the 4th and 5th row zetas are from
         Huzinaga, et al. (ref 9).  The exponents are
         normally the same as for 6-31G*.
 
6-31G*   means d orbitals on second and third row atoms.
         We use Mark Gordon's z=0.395 for Silicon, as well
         as his fully optimized sp basis (ref 21). 
         This is often written 6-31G(d) today.
         For the first row transition metals, the *
         means an f function is added.  The transition
         metal 3d 6-31G orbital is NOT of triple zeta
         quality, and thus is probably not very accurate.
 
6-31G**  means the same as 6-31G*, except that p functions
         are added on hydrogens.
         This is often written 6-31G(d,p) today.
 
6-311G** means p orbitals on H, and d orbitals elsewhere.
         The exponents were derived from correlated atomic
         states, and so are considerably tighter than the
         polarizing functions used in 6-31G**, etc.
         This is often written 6-311G(d,p) today.
 
    The exponents for 6-31G* for C-F are disturbing, in 
that each atom has exactly the same value.  Dunning and Hay 
(ref 30) have recommended a better set of exponents for 
second row atoms and a slightly different value for H.
 
    2p, 3p, 2d, 3p polarization sets are usually thought of 
as arising from applying splitting factors to the 1p and 1d 
values.  For example, SPLIT2=2.0, 0.5 means to double and 
halve the single value.  The default values for SPLIT2 and 
SPLIT3 are taken from reference 103, and were derived with 
correlation in mind.  The SPLIT2 values often produce a 
higher (!) HF energy than the singly polarized run, because 
the exponents are split too widely.  SPLIT2=0.4,1.4 will 
always lower the SCF energy (the values are the unpublished 
personal preference of MWS), and for SPLIT3 we might 
suggest 3.0,1.0,1/3.
 
    With all this as background, we are ready to present 
the tables of polarization exponents that are built into 
GAMESS.  Please note that the names associated with each 
column are only generally descriptive.  The column marked 
"COMMON" is obtained from both Pople (mostly his 6-31G, but 
using Gordon's value for Silicon) and Huzinaga (from the 
"green book").  The exponents for K-Kr under "Dunning" are 
from Curtiss, et al., not Thom Dunning, and so on.  The 
exponents are for d functions unless otherwise indicated.


    Polarization exponents, chosen by POLAR= in $BASIS:

       COMMON  POPN31  POPN311  DUNNING  HUZINAGA  HONDO7
       ------  ------  -------  -------  --------  ------
  H    1.1(p)          0.75(p)   1.0(p)    1.0(p)  1.0(p)
  He   1.1(p)          0.75(p)   1.0(p)    1.0(p)  1.0(p)
 
  Li   0.2             0.200               0.076(p)
  Be   0.4             0.255               0.164(p)  0.32
  B    0.6             0.401     0.70      0.388     0.50
  C    0.8             0.626     0.75      0.600     0.72
  N    0.8             0.913     0.80      0.864     0.98
  O    0.8             1.292     0.85      1.154     1.28
  F    0.8             1.750     0.90      1.496     1.62
  Ne   0.8             2.304     1.00      1.888     2.00
 
  Na   0.175                               0.061(p)  0.157
  Mg   0.175                               0.101(p)  0.234
  Al   0.325                               0.198     0.311
  Si   0.395                               0.262     0.388
  P    0.55                                0.340     0.465
  S    0.65                                0.421     0.542
  Cl   0.75                                0.514     0.619
  Ar   0.85                                0.617     0.696
 
  K    0.2     0.04485           0.260     0.039(p)
  Ca   0.2     0.0502            0.229     0.059(p)
Sc-Zn  N/A      0.8(f)   N/A      N/A       N/A       N/A
  Ga   0.207   0.2289            0.141
  Ge   0.246   0.2772            0.202
  As   0.293   0.3277            0.273
  Se   0.338   0.3810            0.315
  Br   0.389   0.4366            0.338
  Kr   0.443   0.4948            0.318
 
  Rb   0.11                                0.034(p)
  Sr   0.11                                0.048(p)
 
A blank means the value equals the "COMMON" column.


Common d polarization for all sets ("green book"):
    In     Sn     Sb     Te      I     Xe
  0.160  0.183  0.211  0.237  0.266  0.297
    Tl     Pb     Bi     Po     At     Rn
  0.146  0.164  0.185  0.204  0.225  0.247

see f exponents on next page...

f polarization functions, from reference 103:
    Li    Be    B     C     N     O     F     Ne
  0.15  0.26  0.50  0.80  1.00  1.40  1.85  2.50
    Na    Mg    Al    Si    P     S     Cl    Ar
  0.15  0.20  0.25  0.32  0.45  0.55  0.70    --


    Anions usually require diffuse basis functions to 
properly represent their spatial diffuseness.  The use of 
diffuse sp shells on atoms in the second and third rows is 
denoted by a + sign, also adding diffuse s functions on 
hydrogen is symbolized by ++.  These designations can be 
applied to any of the Pople bases, e.g.  3-21+G, 3-21+G*, 
6-31++G**.  The following exponents are for L shells, 
except for H.  For H-F, they are taken from ref 105.  For 
Na-Cl, they are taken directly from reference 106.  These 
values may be found in footnote 13 of reference 103.  For 
Ga-Br, In-I, and Tl-At these were optimized for the atomic 
ground state anion, using ROHF with a flexible ECP basis 
set, by Ted Packwood at NDSU.
 
    H
 0.0360
   Li      Be       B       C       N       O       F
 0.0074  0.0207  0.0315  0.0438  0.0639  0.0845  0.1076
   Na      Mg      Al      Si       P       S      Cl
 0.0076  0.0146  0.0318  0.0331  0.0348  0.0405  0.0483
                   Ga      Ge      As      Se      Br
                 0.0205  0.0222  0.0287  0.0318  0.0376
                   In      Sn      Sb      Te       I
                 0.0223  0.0231  0.0259  0.0306  0.0368
                   Tl      Pb      Bi      Po      At
                 0.0170  0.0171  0.0215  0.0230  0.0294
 
Additional information about diffuse functions and also 
Rydberg type exponents can be found in reference 30.



    The following atomic energies are UHF (RHF on 1-S 
states), p orbitals are not symmetry equivalent, using the 
default scale factors.  They may be useful in picking a 
basis of the desired accuracy.

Atom state   STO-2G        STO-3G       3-21G       6-31G
H   2-S     -.454397     -.466582     -.496199    -.498233
He  1-S    -2.702157    -2.807784    -2.835680   -2.855160
Li  2-S    -7.070809    -7.315526    -7.381513   -7.431236
Be  1-S   -13.890237   -14.351880   -14.486820  -14.566764
B   2-P   -23.395284   -24.148989   -24.389762  -24.519492
C   3-P   -36.060274   -37.198393   -37.481070  -37.677837
N   4-S   -53.093007   -53.719010   -54.105390  -54.385008
O   3-P   -71.572305   -73.804150   -74.393657  -74.780310
F   2-P   -95.015084   -97.986505   -98.845009  -99.360860
Ne  1-S  -122.360485  -126.132546  -127.803825 -128.473877
Na  2-S  -155.170019  -159.797148  -160.854065 -161.841425
Mg  1-S  -191.507082  -197.185978  -198.468103 -199.595219
Al  2-P  -233.199965  -239.026471  -240.551046 -241.854186
Si  3-P  -277.506857  -285.563052  -287.344431 -288.828598
P   4-S  -327.564244  -336.944863  -339.000079 -340.689008
S   3-P  -382.375012  -393.178951  -395.551336 -397.471414
Cl  2-P  -442.206260  -454.546015  -457.276552 -459.442939
Ar  1-S  -507.249273  -521.222881  -524.342962 -526.772151

Atom state     DH       6-311G        MC       SCF limit*
H   2-S    -.498189     -.499810      --        -0.5
He  1-S      --        -2.859895      --        -2.861680
Li  2-S   -7.431736    -7.432026      --        -7.432727
Be  1-S  -14.570907   -14.571874      --       -14.573023
B   2-P  -24.526601   -24.527020      --       -24.529061
C   3-P  -37.685571   -37.686024      --       -37.688619
N   4-S  -54.397260   -54.397980      --       -54.400935
O   3-P  -74.802707   -74.802496      --       -74.809400
F   2-P  -99.395013   -99.394158      --       -99.409353
Ne  1-S -128.522354  -128.522553      --      -128.547104
Na  2-S      --           --     -161.845587  -161.858917
Mg  1-S      --           --     -199.606558  -199.614636
Al  2-P -241.855079       --     -241.870014  -241.876699
Si  3-P -288.829617       --     -288.847782  -288.854380
P   4-S -340.689043       --     -340.711346  -340.718798
S   3-P -397.468667       --     -397.498023  -397.504910
Cl  2-P -459.435938       --     -459.473412  -459.482088
Ar  1-S      --           --     -526.806626  -526.817528

* M.W.Schmidt and K.Ruedenberg, J.Chem.Phys. 71,
  3951-3962(1979). These are ROHF energies in Kh symmetry.
H-Xe can be found in Phys.Rev.A 46, 3691-3696(1992).




created on 7/7/2017