Computational References
 
GAMESS - 
   M.W.Schmidt, K.K.Baldridge, J.A.Boatz, S.T.Elbert,
   M.S.Gordon, J.H.Jensen, S.Koseki, N.Matsunaga, 
   K.A.Nguyen, S.Su, T.L.Windus, M.Dupuis, J.A.Montgomery
   J.Comput.Chem. 14, 1347-1363 (1993)

   M.S.Gordon, M.W.Schmidt   pp 1167-1189
   in "Theory and Applications of Computational Chemistry,
   the first forty years" C.E.Dykstra, G.Frenking, K.S.Kim,
   G.E.Scuseria (editors), Elsevier, Amsterdam, 2005.

HONDO -
These papers describes many of the algorithms in detail,
and much of these applies also to GAMESS:
"The General Atomic and Molecular Electronic Structure
   System: HONDO 7.0"  M.Dupuis, J.D.Watts, H.O.Villar,
   G.J.B.Hurst  Comput.Phys.Comm. 52, 415-425(1989)
"HONDO: A General Atomic and Molecular Electronic
   Structure System"  M.Dupuis, P.Mougenot, J.D.Watts,
   G.J.B.Hurst, H.O.Villar in "MOTECC: Modern Techniques
   in Computational Chemistry"  E.Clementi, Ed.
   ESCOM, Leiden, the Netherlands, 1989, pp 307-361.
"HONDO: A General Atomic and Molecular Electronic
   Structure System"  M.Dupuis, A.Farazdel, S.P.Karna,
   S.A.Maluendes in "MOTECC: Modern Techniques in
   Computational Chemistry"  E.Clementi, Ed.
   ESCOM, Leiden, the Netherlands, 1990, pp 277-342.
M.Dupuis, S.Chin, A.Marquez in "Relativistic and Electron
Correlation Effects in Molecules", G.Malli, Ed.  Plenum 
Press, NY 1994, pp 315-338.

sp integrals and gradient integrals -
inner axis sp integration is done by McMurchie/Davidson
J.A.Pople, W.J.Hehre  J.Comput.Phys. 27, 161-168(1978)
H.B.Schlegel, J.Chem.Phys.  77, 3676-3681(1982)

spd integrals by rotated axis/McMurchie-Davidson
K.Ishimura, S.Nagase  Theoret.Chem.Acc. 120, 185-189(2008)

McMurchie/Davidson integrals -
L.E.McMurchie, E.R.Davidson
  J.Comput.Phys. 26, 218-231(1978)
 
spdfghi integrals -
"Numerical Integration Using Rys Polynomials"
    H.F.King and M.Dupuis   J.Comput.Phys. 21,144(1976)
"Evaluation of Molecular Integrals over Gaussian
                                     Basis Functions"
   M.Dupuis,J.Rys,H.F.King  J.Chem.Phys. 65,111-116(1976)
"Molecular Symmetry and Closed Shell HF Calculations"
 M.Dupuis and H.F.King   Int.J.Quantum Chem. 11,613(1977)
"Computation of Electron Repulsion Integrals using
           the Rys Quadrature Method"
    J.Rys,M.Dupuis,H.F.King J.Comput.Chem. 4,154-157(1983)

ERIC spdfg integrals -
"Recursion Formula for Electron Repulsion Integrals Over 
Hermite Polynomials"
    G.D.Fletcher  Int.J.Quantum Chem. 106, 355-360(2006)
 
spdfg gradient integrals -
"Molecular Symmetry. II. Gradient of Electronic Energy
 with respect to Nuclear Coordinates"
    M.Dupuis and H.F.King  J.Chem.Phys. 68,3998(1978)
although the implementation is much newer than this paper.
 
spd hessian integrals -
"Molecular Symmetry. III. Second derivatives of Electronic
 Energy with respect to Nuclear Coordinates"
    T.Takada, M.Dupuis, H.F.King
    J.Chem.Phys.  75, 332-336 (1981)

the Q matrix, and integral transformation symmetry -
E.Hollauer, M.Dupuis  J.Chem.Phys.  96, 5220 (1992)

spdfg effective core potential (ECP) integral/derivatives -
C.F.Melius, W.A.Goddard   Phys.Rev.A  10,1528-1540(1974)
L.R.Kahn, P.Baybutt, D.G.Truhlar
   J.Chem.Phys.  65, 3826-3853 (1976)
M.Krauss, W.J.Stevens  Ann.Rev.Phys.Chem. 35, 357-385(1985)
J.Breidung, W.Thiel, A.Komornicki  
   Chem.Phys.Lett.  153, 76-81(1988)
B.M.Bode, M.S.Gordon  J.Chem.Phys.  111, 8778-8784(1999)
See also the papers listed for SBKJC and HW basis sets.

model core potential (MCP) reviews -
S.Huzinaga   Can.J.Chem.  73, 619-628(1995)
M.Klobukowski, S.Huzinaga, Y.Sakai, in Computational 
Chemistry: Reviews of current trends, volume 3, pp 49-74, 
edited by J.Leszczynski, World Scientific, Singapore, 1999.

Quantum fast multipole method (QFMM) -
E.O.Steinborn, K.Ruedenberg
   Adv.Quantum Chem. 7, 1-81(1973)
L.Greengard  "The Rapid Evaluation of Potential Fields in
              Particle Systems" (MIT, Cambridge, 1987)
C.H.Choi, J.Ivanic, M.S.Gordon, K.Ruedenberg
   J.Chem.Phys.  111, 8825-8831(1999)
C.H.Choi, K.Ruedenberg, M.S.Gordon
   J.Comput.Chem.  22, 1484-1501(2001)
C.H.Choi  J.Chem.Phys. 120, 3535-3543(2004)

RHF -
C.C.J.Roothaan  Rev.Mod.Phys.  23, 69-89(1951)

UHF -
J.A.Pople, R.K.Nesbet  J.Chem.Phys 22, 571-572(1954)

high-spin coupled ROHF -
C.C.J.Roothaan  Rev.Mod.Phys. 32, 179-185(1960)
R.McWeeny, G.Diercksen  J.Chem.Phys. 49,4852-4856(1968)
M.F.Guest, V.R.Saunders  Mol.Phys. 28, 819-828(1974)
J.S.Binkley, J.A.Pople, P.A.Dobosh
   Mol.Phys.  28, 1423-1429(1974)
E.R.Davidson  Chem.Phys.Lett.  21,565-567(1973)
K.Faegri, R.Manne  Mol.Phys.  31,1037-1049(1976)
H.Hsu, E.R.Davidson, and R.M.Pitzer
   J.Chem.Phys. 65,609-613(1976)
B.N.Plakhutin, E.V.Gorelik, N.N.Breslavskaya
   J.Chem.Phys. 125, 204110/1-10(2006)
B.N.Plakhutin, E.R.Davidson
   J.Phys.Chem.A 113, 12386-12395(2009)
E.R.Davidson, B.N.Plakhutin
   J.Chem.Phys. 132, 184110/1-14(2010)
K.R.Glaesemann, M.W.Schmidt
   J.Phys.Chem.A 114, 8772-8777(2010)

Constrained UHF (CUHF is equivalent to high spin ROHF) -
G.E.Scuseria, T.Tsuchimochi
   J.Chem.Phys. 134, 064101/1-14(2011)

GVB and low-spin coupled ROHF -
F.W.Bobrowicz and W.A.Goddard, in Modern Theoretical
Chemistry, Vol 3, H.F.Schaefer III, Ed., Chapter 4.

DFT and TD-DFT -
All appropriate references are included in the section on 
density functional theory included below.

MCSCF - see reference list in its own subsection below

determinant CI -
   full CI (ALDET) and general CI (GENCI),
J.Ivanic, K.Ruedenberg
Theoret.Chem.Acc. 106, 339-351(2001)
   occupation restricted multiple active space (ORMAS),
J.Ivanic  J.Chem.Phys.  119, 9364-9376, 9377-9385(2003)

configuration state function CI (GUGA) -
B.Brooks and H.F.Schaefer  J.Chem. Phys. 70,5092(1979)
B.Brooks, W.Laidig, P.Saxe, N.Handy, and H.F.Schaefer,
   Physica Scripta 21, 312(1980).

CIS energy and gradient -
J.B.Foresman, M.Head-Gordon, J.A.Pople, M.J.Frisch
   J.Phys.Chem. 96, 135-149(1992)
R.M.Shroll, W.D.Edwards
   Int.J.Quantum Chem. 63, 1037-1049(1997)
the parallel CIS implementation in GAMESS is described in
   S.P.Webb  Theoret.Chem.Acc. 116, 355-372(2006)
which has a nice review of other excited state methods.

spin-flip CIS:
A.I.Krylov  Chem.Phys.Lett. 338, 375(2001)

closed, unrestricted open shell 2nd order Moller-Plesset -
J.A.Pople, J.S.Binkley, R.Seeger
  Int. J. Quantum Chem. S10, 1-19(1976)
M.J.Frisch, M.Head-Gordon, J.A.Pople,
  Chem.Phys.Lett. 166, 275-280(1990)
C.M.Aikens, S.P.Webb, R.L.Bell, G.D.Fletcher, M.W.Schmidt,
  M.S.Gordon  Theoret.Chem.Acc., 110, 233-253(2003)
with the TCA "overview article" being a thorough review of
the single determinant MP2 gradient equations.

CODE=SERIAL is generally based on the CPL paper above, as 
described in the HONDO references given above.

The next two document CODE=DDI for RHF and UHF,
G.D.Fletcher, M.W.Schmidt, M.S.Gordon
  Adv.Chem.Phys. 110, 267-294(1999)
C.M.Aikens, M.S.Gordon
  J.Phys.Chem.A, 108, 3103-3110(2004)

The next two document CODE=IMS for RHF,
K.Ishimura, P.Pulay, S.Nagase
  J.Comput.Chem. 27, 407-413(2006)
K.Ishimura, P.Pulay, S.Nagase
  J.Comput.Chem. 28, 2034-2042(2007)

The next documents code=RIMP2 for RHF and UHF,
M.Katouda, S.Nagase
  Int.J.Quantum Chem. 109, 2121-2130(2009)

Spin Component Scaled MP2 (SCS-MP2)
S.Grimme
  J.Chem.Phys. 118, 9095-9102(2003)
 
spin restricted open shell MP2, ZAPT energy -
T.J.Lee, D.Jayatilaka
  Chem.Phys.Lett. 201, 1-10(1993)
T.J.Lee, A.P.Rendell, K.G.Dyall, D.Jayatilaka
  J.Chem.Phys.  100, 7400-7409(1994)

nuclear gradients for ZAPT - 
The next two document the CODE=DDI program,
G.D.Fletcher, M.S.Gordon, R.L.Bell
  Theoret.Chem.Acc. 107, 57-70(2002)
C.M.Aikens, G.D.Fletcher, M.W.Schmidt, M.S.Gordon
  J.Chem.Phys. 124, 014107/1-14(2006)
 
spin restricted open shell MP2, RMP method -
P.J.Knowles, J.S.Andrews, R.D.Amos, N.C.Handy, J.A.Pople
  Chem.Phys.Lett.  186, 130-136 (1991)
W.J.Lauderdale,J.F.Stanton,J.Gauss,J.D.Watts,R.J.Bartlett
  Chem.Phys.Lett.  187, 21-28(1991)
CUMP2 is equivalent to RMP2 (See CUHF reference above).

multiconfigurational quasidegenerate perturbation theory -
H.Nakano  J.Chem.Phys.  99, 7983-7992(1993)

ORMAS-based multireference perturbation theory -
L.Roskop, M.S.Gordon J.Chem.Phys. 135, 044101/1-11(2012)

Coupled-Cluster -
Equation of Motion Coupled-Cluster (EOMCC) -
    this is a subset of the relevant papers:
P.Piecuch, S.A.Kucharski, K.Kowalski, M.Musial,
  Comput.Phys.Commun.  149, 71-96(2002)
K.Kowalski, P.Piecuch,
  J.Chem.Phys.  120, 1715-1738 (2004)
P.Piecuch, S.A.Kucharski, K.Kowalski, M.Musial
  Comput.Phys.Commun.  149, 71-96(2002).

parallel CCSD(T) program -
J.L.Bentz, R.M.Olson, M.S.Gordon, M.W.Schmidt, R.A.Kendall
  Comput.Phys.Commun.  176, 589-600(2007)
R.M.Olson, J.L.Bentz, R.A.Kendall, M.W.Schmidt, M.S.Gordon
  J.Comput.Theoret.Chem. 3, 1312-1328(2007)

Any publication describing the results of ground-state 
and/or excited-state calculations using the equation of 
motion coupled-cluster and/or completely renormalized 
EOMCCSD(T) options (CCTYP=EOM-CCSD or CR-EOM) obtained with 
GAMESS should reference the specific papers appearing in 
the printout.  For more references to the primary 
literature for both types of coupled-cluster methods, see 
the section "Coupled-Cluster theory" below.

RHF/ROHF/TCSCF coupled perturbed Hartree Fock -
"Single Configuration SCF Second Derivatives on a Cray"
    H.F.King, A.Komornicki in "Geometrical Derivatives of
    Energy Surfaces and Molecular Properties" P.Jorgensen
    J.Simons, Ed. D.Reidel, Dordrecht, 1986, pp 207-214.
"A parallel Distributed data CPHF algorithm for analytic 
Hessians"  Y.Alexeev, M.W.Schmidt, T.L.Windus, M.S.Gordon
    J.Comput.Chem. 28, 1685-1694(2007).
Y.Osamura, Y.Yamaguchi, D.J.Fox, M.A.Vincent, H.F.Schaefer
    J.Mol.Struct.  103, 183-186(1983)
M.Duran, Y.Yamaguchi, H.F.Schaefer
    J.Phys.Chem.  92, 3070-3075(1988)
"A New Dimension to Quantum Chemistry"  Y.Yamaguchi,
Y.Osamura, J.D.Goddard, H.F.Schaefer  Oxford Press, NY 1994

MCSCF coupled perturbed Hartree-Fock -
M.R.Hoffman, D.J.Fox, J.F.Gaw, Y.Osamura, Y.Yamauchi,
R.S.Grev, G.Fitzgerald, H.F.Schaefer, P.J.Knowles,
N.C.Handy  J.Chem.Phys.  80, 2660-2668(1984)
the book by Osamura, Goddard, and Schaefer just mentioned.
T.J.Dudley, R.M.Olson, M.W.Schmidt, M.S.Gordon
    J.Comput.Chem. 27, 353-362(2006)

non-adiabatic coupling matrix element (NACME) -
J.C.Tully, chapter 5 (pp 217-267) in "Dynamics of Molecular 
Collisions - Part B", edited by W.H.Miller, Plenum Press, 
NY, 1976.
B.H.Lengsfield, D.R.Yarkony, chapter 1 (pp. 1-71) in 
"State-selected and state-to-state in-molecule reaction 
dynamics- Part 2, theory", edited by M.Baer and C.-Y.Ng, 
John Wiley, NY, 1992.

harmonic vibrational analysis in Cartesian coordinates -
W.D.Gwinn  J.Chem.Phys.  55,477-481(1971)
 
Normal coordinate decomposition analysis -
J.A.Boatz and M.S.Gordon,
   J.Phys.Chem. 93, 1819-1826(1989).

Partial Hessian vibrational analysis -
H.Li, J.H.Jensen, Theoret.Chem.Acc. 107, 211-219(2002)

anharmonic vibrational spectra (VSCF) -

        a review of VSCF:
R.B.Gerber, J.O.Jung
   in "Computational Molecular Spectroscopy"
   P.Jensen, P.R.Bunker, eds.
   Wiley and Sons, Chichester, 2000, pp 365-390.
        the basic method for VSCF and cc-VSCF:
G.M.Chaban, J.O.Jung, R.B.Gerber
   J.Chem.Phys.  111, 1823-1829(1999)
        the QFF approximation:
K.Yagi, K.Hirao, T.Taketsugu, M.W.Schmidt, M.S.Gordon
   J.Chem.Phys.  121, 1383-1389(2004)
        the VDPT solver:
N.Matsunaga, G.M.Chaban, R.B.Gerber
   J.Chem.Phys. 117, 3541-3547(2002)
        solver for larger systems:
L.Pele, B.Brauer, R.B.Gerber
   Theoret.Chem.Acc. 117, 69-72(2007)
        use of internal coordinates, and thermochemistry
B.Njegic, M.S.Gordon
   J.Chem.Phys. 125, 224102/1-12(2006)

        applications of RUNTYP=VSCF:
G.M.Chaban, J.O.Jung, R.B.Gerber
   J.Phys.Chem.A  104, 2772-2779(2000)
J.Lundell, G.M.Chaban, R.B.Gerber
   Chem.Phys.Lett. 331, 308-316(2000)
K.Yagi, T.Taketsugu, K.Hirao, M.S.Gordon
   J.Chem.Phys.  113, 1005-1017(2000)
G.M.Chaban, R.B.Gerber, K.C.Janda
   J.Phys.Chem.A  105, 8323-8332(2001)
A.T.Kowal Spectrochimica Acta A 58, 1055-1067(2002)
G.M.Chaban, S.S.Xantheas, R.B.Gerber
   J.Phys.Chem.A  107, 4952-4956(2003)
G.M.Chaban J.Phys.Chem.A 108, 4551-4556(2004)
Y.Miller, G.M.Chaban, R.B.Gerber
   J.Phys.Chem.A 109, 6565-6574(2005)
Y.Miller, G.M.Chaban, R.B.Gerber
   Chem.Phys. 313, 213-224(2005)
C.A.Brindle, G.M.Chaban, R.B.Gerber, K.C.Janda
   Phys.Chem.Chem.Phys. 7, 945-954(2005)
G.M.Chaban, R.M.Gerber
   Theoret.Chem.Acc. 120, 273-279(2008)

Raman spectrum -
A.Komornicki, J.W.McIver  J.Chem.Phys. 70, 2014-2016(1979)
G.B.Bacskay, S.Saebo, P.R.Taylor
   Chem.Phys. 90, 215-224(1984)

static polarizabilities:
H.A.Kurtz, J.J.P.Stewart, K.M.Dieter
   J.Comput.Chem.  11, 82-87 (1990)

dynamic polarizabilities:
P.Korambath, H.A.Kurtz, in "Nonlinear Optical Materials",
ACS Symposium Series 628, S.P.Karna and A.T.Yeates, Eds.
pp 133-144, Washington DC, 1996.

nuclear derivatives of dynamic polarizabilities,
   and dynamic Raman and hyper-Raman:
O.Quinet, B.Champagne  J.Chem.Phys. 115, 6293-6299(2001)
O.Quinet, B.Champagne B.Kirtman
   J.Comput.Chem. 22, 1920-1932(2001)
O.Quinet, B.Champagne  J.Chem.Phys. 117, 2481-2488(2002)
O.Quinet, B.Kirtman, B.Champagne
   J.Chem.Phys.  118, 505-513(2003)

Geometry optimization and saddle point location -
J.Baker  J.Comput.Chem. 7, 385-395(1986).
T.Helgaker  Chem.Phys.Lett. 182, 503-510(1991).
P.Culot, G.Dive, V.H.Nguyen, J.M.Ghuysen
   Theoret.Chim.Acta  82, 189-205(1992).

Dynamic Reaction Coordinate (DRC) -
J.J.P.Stewart, L.P.Davis, L.W.Burggraf,
    J.Comput.Chem.  8, 1117-1123 (1987)
S.A.Maluendes, M.Dupuis,  J.Chem.Phys.  93, 5902-5911(1990)
T.Taketsugu, M.S.Gordon,  J.Phys.Chem.  99, 8462-8471(1995)
T.Taketsugu, M.S.Gordon,  J.Phys.Chem.  99, 14597-604(1995)
T.Taketsugu, M.S.Gordon,  J.Chem.Phys.  103, 10042-9(1995)
M.S.Gordon, G.Chaban, T.Taketsugu
    J.Phys.Chem.  100, 11512-11525(1996)
T.Takata, T.Taketsugu, K.Hirao, M.S.Gordon
    J.Chem.Phys.  109, 4281-4289(1998)
T.Taketsugu, T.Yanai, K.Hirao, M.S.Gordon
    THEOCHEM  451, 163-177(1998)

Energy orbital localization -
C.Edmiston, K.Ruedenberg  Rev.Mod.Phys.  35, 457-465(1963).
R.C.Raffenetti, K.Ruedenberg, C.L.Janssen, H.F.Schaefer,
   Theoret.Chim.Acta 86, 149-165(1993)
 
Boys orbital localization -
S.F.Boys, "Quantum Science of Atoms, Molecules, and Solids"
P.O.Lowdin, Ed, Academic Press, NY, 1966, pp 253-262.
See the first paper on oriented localized orbitals if you 
wish to know the true origin of "Boys localization"

Population orbital localization -
J.Pipek, P.Z.Mezey  J.Chem.Phys.  90, 4916(1989).

Oriented localized orbitals -
J.Ivanic, G.M.Atchity, K.Ruedenberg
   Theoret.Chem.Acc. 120, 281-294(2008)
J.Ivanic, K.Ruedenberg
   Theoret.Chem.Acc. 120, 295-305(2008)

Valence Virtual Orbitals (VVOS) -
W.C.Lu, C.Z.Wang, M.W.Schmidt, L.Bytautas, K.M.Ho,
K.Ruedenberg
   J.Chem.Phys. 120, 2629-2637 and 2638-2651(2004)
W.C.Lu, C.Z.Wang, T.L.Chan, K.Ruedenberg, K.M.Ho
   Phys.Rev.B 70, 041101-1/4(2004)

Mulliken Population Analysis -
R.S.Mulliken  J.Chem.Phys. 23, 1833-1840, 1841-1846, 
                               2338-2342, 2343-2346(1955)

so called "Lowdin Population Analysis" -
This should be described as "a Mulliken population analysis
(ref M1-M4 above) based on symmetrically orthogonalized
orbitals (ref L)", where reference L is
   P.-O.Lowdin  Adv.Chem.Phys.  5, 185-199(1970)
Lowdin populations are not invariant to rotation if the 
basis set used is Cartesian d,f,...:
   I.Mayer, Chem.Phys.Lett. 393, 209-212(2004).

Bond orders and valences -
M.Giambiagi, M.Giambiagi, D.R.Grempel, C.D.Heymann
    J.Chim.Phys.  72, 15-22(1975)
I.Mayer, Chem.Phys.Lett. 97,270-274(1983), 117,396(1985).
M.S.Giambiagi, M.Giambiagi, F.E.Jorge
    Z.Naturforsch.  39a, 1259-73(1984)
I.Mayer, Theoret.Chim.Acta  67, 315-322(1985).
I.Mayer, Int.J.Quantum Chem.  29, 73-84(1986).
I.Mayer, Int.J.Quantum Chem.  29, 477-483(1986).
The same formula (apart from a factor of two) may also be
seen in equation 31 of the second of these papers (the bond
order formula in the 1st of these is not the same formula):
T.Okada, T.Fueno  Bull.Chem.Soc.Japan 48, 2025-2032(1975)
T.Okada, T.Fueno  Bull.Chem.Soc.Japan 49, 1524-1530(1976)
a review about bond orders:
   I. Mayer, J.Comput.Chem. 28, 204-221(2007).

Direct SCF -
J.Almlof, K.Faegri, K.Korsell
   J.Comput.Chem.  3, 385-399 (1982)
M.Haser, R.Ahlrichs
   J.Comput.Chem.  10, 104-111 (1989)
 
DIIS (Direct Inversion in the Iterative Subspace) -
P.Pulay  J.Comput.Chem.  3, 556-560(1982)

SOSCF -
G.Chaban, M.W.Schmidt, M.S.Gordon
   Theor.Chem.Acc.  97, 88-95(1997)
T.H.Fischer, J.Almlof  J.Phys.Chem.  96,9768-74(1992)

Modified Virtual Orbitals (MVOs) -
C.W.Bauschlicher, Jr.  J.Chem.Phys.  72,880-885(1980)

Thermochemistry (RUNTYP=G3MP2) -
    G3(MP2,CCSD(T)) is defined in
L.A.Curtiss, K.Ragavachari, P.C.Redfern, A.G.Baboul, 
J.A.Pople  Chem.Phys.Lett. 314, 101-107(1999)
    based on various other G3 basis set/method papers:
L.A.Curtiss, P.C.Redfern, K.Raghavachari, V.Rassolov, 
J.A.Pople  J.Chem.Phys. 110, 4703-4709(1999)
L.A.Curtiss, P.C.Redfern, K.Raghavachari, V.Rassolov, 
J.A.Pople  J.Chem.Phys. 114, 9287-9295(2001)
L.A.Curtiss, P.C.Redfern, K.Raghavachari, V.Rassolov, 
J.A.Pople  J.Chem.Phys. 109,7764-7776(1998)
L.A.Curtiss, K.Ragavachari
   Theoret.Chem.Acc. 108, 61-70(2002)

EVVRSP, in memory diagonalization -
S.T.Elbert  Theoret.Chim.Acta  71,169-186(1987)

Davidson eigenvector method -
E.R.Davidson  J.Comput.Phys. 17,87(1975)
"Matrix Eigenvector Methods" p. 95-113 in "Methods in 
Computational Molecular Physics", edited by G.H.F.Diercksen 
and S.Wilson, D.Reidel Publishing, Dordrecht, 1983.
M.L.Leininger, C.D.Sherrill, W.D.Allen, H.F.Schaefer,
   J.Comput.Chem. 22, 1574-1589(2001)

RESC (Relativistic Elimination of Small Components) -
T.Nakajima, K.Hirao  Chem.Phys.Lett. 302, 383-391(1999)
T.Nakajima, T.Suzumura, K.Hirao
     Chem.Phys.Lett.  304, 271(1999)
D.G.Fedorov, T.Nakajima, K.Hirao
     Chem.Phys.Lett. 335, 183-187(2001)


DK (Douglas-Kroll relativistic transformation) -
M.Douglas, N.M.Kroll  Ann.Phys.  82, 89-155(1974)
B.A.Hess  Phys.Rev. A33, 3742-3748(1986)
G.Jansen, B.A.Hess  Phys.Rev. A39, 6016-6017(1989)
T.Nakajima, K.Hirao  J.Chem.Phys. 113, 7786-7789(2000)
T.Nakajima, K.Hirao  Chem.Phys.Lett. 329, 511-516(2000)
W.A.DeJong, R.J.Harrison, D.A.Dixon
                         J.Chem.Phys. 114, 48-53(2001)
A.Wolf, M.Reiher, B.A.Hess  J.Chem.Phys. 117, 9215-26(2002)
T.Nakajima, K.Hirao  J.Chem.Phys. 119, 4105-4111(2003)
      (and see just below for DK1 during SOC)

IOTC (Infinite-Order Two-Component) relativy correction -
M.Barysz, A.J.Sadlej J.Chem.Phys. 116, 2696-2704(2002)
M.Barysz, Progress in Theoretical Chemistry and Physics,
    Kluwer Academic Publishers, 349-397(2002)
D.Kedziera, M.Barysz, A.J.Sadlej
    Struct.Chem. 15, 369-377(2004)
D.Kedziera, M.Barysz, J.Chem.Phys. 121, 6719-6727(2004)
M.Barysz, L.Mentel, J.Leszczynski
    J.Chem.Phys. 130, 164114/1-7(2009)

LUT-IOTC (local unitary transformation IOTC relativity -
J.Seino, H.Nakai  J.Chem.Phys. 136, 244101/1-13(2012)
J.Seino, H.Nakai  J.Chem.Phys. 137, 144101/1-15(2012)
Y.Nakajima, J.Seino, H.Nakai
     J.Chem.Phys. 139, 244107/1-13(2013)
J.Seino, H.Nakai  Int.J.Quantum Chem. 115, 253-257(2014)

NESC (Normalized Elimination of Small Components) -
K.G.Dyall  J.Comput.Chem.  23, 786-793(2002)

Spin-orbit coupling and transition moments ?
Many references can be found in the section on this topic 
below.

GIAO NMR -
R.Ditchfield  Mol.Phys. 27, 789-807(1974)
M.A.Freitag, B.Hillman, A.Agrawal, M.S.Gordon
    J.Chem.Phys.  120, 1197-1202(2004)

Solvation models: EFP, SCRF, PCM, or COSMO.
All appropriate references are included in the sections on
these topics included below.

MOPAC 6 -
J.J.P.Stewart  
    J.Computer-Aided Molecular Design  4, 1-105 (1990)
References for parameters for individual atoms may be found
on the printout from your runs.

MacMolPlt -
B.M.Bode, M.S.Gordon  J.Mol.Graphics Mod. 16, 133-138(1998)

quantum chemistry parallelization in GAMESS -
for SCF, see the main GAMESS paper quoted above.
T.L.Windus, M.W.Schmidt, M.S.Gordon, 
    Chem.Phys.Lett.  216, 375-379(1993)
T.L.Windus, M.W.Schmidt, M.S.Gordon, 
    Theoret.Chim.Acta  89, 77-88 (1994)
T.L.Windus, M.W.Schmidt, M.S.Gordon, in "Parallel Computing
    in Computational Chemistry", ACS Symposium Series 592,
    Ed. by T.G.Mattson, ACS Washington, 1995, pp 16-28.
K.K.Baldridge, M.S.Gordon, J.H.Jensen, N.Matsunaga, 
M.W.Schmidt, T.L.Windus, J.A.Boatz, T.R.Cundari
    ibid, pp 29-46.
G.D.Fletcher, M.W.Schmidt, M.S.Gordon
    Adv.Chem.Phys.  110, 267-294 (1999)
H.Umeda, S.Koseki, U.Nagashima, M.W.Schmidt
    J.Comput.Chem.  22, 1243-1251 (2001)
C.H.Choi, K.Ruedenberg  J.Comput.Chem. 22, 1484-1501(2001)
D.G.Fedorov, M.S.Gordon  ACS Symp.Series 828, 1-22(2002)
H.Li, C.S.Pomelli, J.H.Jensen
   Theoret.Chem.Acc. 109, 71-84(2003)
C.M.Aikens, M.S.Gordon  J.Phys.Chem.A  108, 3103-3110(2004)
H.M.Netzloff, M.S.Gordon J.Comput.Chem. 25, 1926-1936(2004)
T.J.Dudley, R.M.Olson, M.W.Schmidt, M.S.Gordon
    J.Comput.Chem. 27, 353-362(2006)
C.M.Aikens, G.D.Fletcher, M.W.Schmidt, M.S.Gordon
   J.Chem.Phys. 124, 014107/1-14(2006)
Y.Alexeev, M.W.Schmidt, T.L.Windus, M.S.Gordon
  J.Comput.Chem. 28, 1685-1694(2007).
R.M.Olson, J.L.Bentz, R.A.Kendall, M.W.Schmidt, M.S.Gordon
  J.Comput.Theoret.Chem. 3, 1312-1328(2007)
J.L.Bentz, R.M.Olson, M.S.Gordon, M.W.Schmidt, R.A.Kendell
  Comput.Phys.Commun., 176, 589-600 (2007).
G.D.Fletcher  Mol.Phys.  105, 2971-2976(2007)

The Distributed Data Interface (DDI), which is the computer
science layer underneath the parallel quantum chemistry -
G.D.Fletcher, M.W.Schmidt, B.M.Bode, M.S.Gordon
    Comput.Phys.Commun. 128, 190-200 (2000)
R.M.Olson, M.W.Schmidt, M.S.Gordon, A.P.Rendell
    Proc. of Supercomputing 2003, IEEE Computer Society.
    This does not exist on paper, but can be downloaded at
    http://www.sc-conference.org/sc2003/tech_papers.php
D.G.Fedorov, R.M.Olson, K.Kitaura, M.S.Gordon, S.Koseki
    J.Comput.Chem.  25, 872-880(2004).





created on 7/7/2017