Computational References GAMESS - M.W.Schmidt, K.K.Baldridge, J.A.Boatz, S.T.Elbert, M.S.Gordon, J.H.Jensen, S.Koseki, N.Matsunaga, K.A.Nguyen, S.Su, T.L.Windus, M.Dupuis, J.A.Montgomery J.Comput.Chem. 14, 1347-1363 (1993) M.S.Gordon, M.W.Schmidt pp 1167-1189 in "Theory and Applications of Computational Chemistry, the first forty years" C.E.Dykstra, G.Frenking, K.S.Kim, G.E.Scuseria (editors), Elsevier, Amsterdam, 2005. HONDO - These papers describes many of the algorithms in detail, and much of these applies also to GAMESS: "The General Atomic and Molecular Electronic Structure System: HONDO 7.0" M.Dupuis, J.D.Watts, H.O.Villar, G.J.B.Hurst Comput.Phys.Comm. 52, 415-425(1989) "HONDO: A General Atomic and Molecular Electronic Structure System" M.Dupuis, P.Mougenot, J.D.Watts, G.J.B.Hurst, H.O.Villar in "MOTECC: Modern Techniques in Computational Chemistry" E.Clementi, Ed. ESCOM, Leiden, the Netherlands, 1989, pp 307-361. "HONDO: A General Atomic and Molecular Electronic Structure System" M.Dupuis, A.Farazdel, S.P.Karna, S.A.Maluendes in "MOTECC: Modern Techniques in Computational Chemistry" E.Clementi, Ed. ESCOM, Leiden, the Netherlands, 1990, pp 277-342. M.Dupuis, S.Chin, A.Marquez in "Relativistic and Electron Correlation Effects in Molecules", G.Malli, Ed. Plenum Press, NY 1994, pp 315-338. sp integrals and gradient integrals - inner axis sp integration is done by McMurchie/Davidson J.A.Pople, W.J.Hehre J.Comput.Phys. 27, 161-168(1978) H.B.Schlegel, J.Chem.Phys. 77, 3676-3681(1982) spd integrals by rotated axis/McMurchie-Davidson K.Ishimura, S.Nagase Theoret.Chem.Acc. 120, 185-189(2008) McMurchie/Davidson integrals - L.E.McMurchie, E.R.Davidson J.Comput.Phys. 26, 218-231(1978) spdfghi integrals - "Numerical Integration Using Rys Polynomials" H.F.King and M.Dupuis J.Comput.Phys. 21,144(1976) "Evaluation of Molecular Integrals over Gaussian Basis Functions" M.Dupuis,J.Rys,H.F.King J.Chem.Phys. 65,111-116(1976) "Molecular Symmetry and Closed Shell HF Calculations" M.Dupuis and H.F.King Int.J.Quantum Chem. 11,613(1977) "Computation of Electron Repulsion Integrals using the Rys Quadrature Method" J.Rys,M.Dupuis,H.F.King J.Comput.Chem. 4,154-157(1983) ERIC spdfg integrals - "Recursion Formula for Electron Repulsion Integrals Over Hermite Polynomials" G.D.Fletcher Int.J.Quantum Chem. 106, 355-360(2006) spdfg gradient integrals - "Molecular Symmetry. II. Gradient of Electronic Energy with respect to Nuclear Coordinates" M.Dupuis and H.F.King J.Chem.Phys. 68,3998(1978) although the implementation is much newer than this paper. spd hessian integrals - "Molecular Symmetry. III. Second derivatives of Electronic Energy with respect to Nuclear Coordinates" T.Takada, M.Dupuis, H.F.King J.Chem.Phys. 75, 332-336 (1981) the Q matrix, and integral transformation symmetry - E.Hollauer, M.Dupuis J.Chem.Phys. 96, 5220 (1992) spdfg effective core potential (ECP) integral/derivatives - C.F.Melius, W.A.Goddard Phys.Rev.A 10,1528-1540(1974) L.R.Kahn, P.Baybutt, D.G.Truhlar J.Chem.Phys. 65, 3826-3853 (1976) M.Krauss, W.J.Stevens Ann.Rev.Phys.Chem. 35, 357-385(1985) J.Breidung, W.Thiel, A.Komornicki Chem.Phys.Lett. 153, 76-81(1988) B.M.Bode, M.S.Gordon J.Chem.Phys. 111, 8778-8784(1999) See also the papers listed for SBKJC and HW basis sets. model core potential (MCP) reviews - S.Huzinaga Can.J.Chem. 73, 619-628(1995) M.Klobukowski, S.Huzinaga, Y.Sakai, in Computational Chemistry: Reviews of current trends, volume 3, pp 49-74, edited by J.Leszczynski, World Scientific, Singapore, 1999. Quantum fast multipole method (QFMM) - E.O.Steinborn, K.Ruedenberg Adv.Quantum Chem. 7, 1-81(1973) L.Greengard "The Rapid Evaluation of Potential Fields in Particle Systems" (MIT, Cambridge, 1987) C.H.Choi, J.Ivanic, M.S.Gordon, K.Ruedenberg J.Chem.Phys. 111, 8825-8831(1999) C.H.Choi, K.Ruedenberg, M.S.Gordon J.Comput.Chem. 22, 1484-1501(2001) C.H.Choi J.Chem.Phys. 120, 3535-3543(2004) RHF - C.C.J.Roothaan Rev.Mod.Phys. 23, 69-89(1951) UHF - J.A.Pople, R.K.Nesbet J.Chem.Phys 22, 571-572(1954) high-spin coupled ROHF - C.C.J.Roothaan Rev.Mod.Phys. 32, 179-185(1960) R.McWeeny, G.Diercksen J.Chem.Phys. 49,4852-4856(1968) M.F.Guest, V.R.Saunders Mol.Phys. 28, 819-828(1974) J.S.Binkley, J.A.Pople, P.A.Dobosh Mol.Phys. 28, 1423-1429(1974) E.R.Davidson Chem.Phys.Lett. 21,565-567(1973) K.Faegri, R.Manne Mol.Phys. 31,1037-1049(1976) H.Hsu, E.R.Davidson, and R.M.Pitzer J.Chem.Phys. 65,609-613(1976) B.N.Plakhutin, E.V.Gorelik, N.N.Breslavskaya J.Chem.Phys. 125, 204110/1-10(2006) B.N.Plakhutin, E.R.Davidson J.Phys.Chem.A 113, 12386-12395(2009) E.R.Davidson, B.N.Plakhutin J.Chem.Phys. 132, 184110/1-14(2010) K.R.Glaesemann, M.W.Schmidt J.Phys.Chem.A 114, 8772-8777(2010) Constrained UHF (CUHF is equivalent to high spin ROHF) - G.E.Scuseria, T.Tsuchimochi J.Chem.Phys. 134, 064101/1-14(2011) GVB and low-spin coupled ROHF - F.W.Bobrowicz and W.A.Goddard, in Modern Theoretical Chemistry, Vol 3, H.F.Schaefer III, Ed., Chapter 4. DFT and TD-DFT - All appropriate references are included in the section on density functional theory included below. MCSCF - see reference list in its own subsection below determinant CI - full CI (ALDET) and general CI (GENCI), J.Ivanic, K.Ruedenberg Theoret.Chem.Acc. 106, 339-351(2001) occupation restricted multiple active space (ORMAS), J.Ivanic J.Chem.Phys. 119, 9364-9376, 9377-9385(2003) configuration state function CI (GUGA) - B.Brooks and H.F.Schaefer J.Chem. Phys. 70,5092(1979) B.Brooks, W.Laidig, P.Saxe, N.Handy, and H.F.Schaefer, Physica Scripta 21, 312(1980). CIS energy and gradient - J.B.Foresman, M.Head-Gordon, J.A.Pople, M.J.Frisch J.Phys.Chem. 96, 135-149(1992) R.M.Shroll, W.D.Edwards Int.J.Quantum Chem. 63, 1037-1049(1997) the parallel CIS implementation in GAMESS is described in S.P.Webb Theoret.Chem.Acc. 116, 355-372(2006) which has a nice review of other excited state methods. spin-flip CIS: A.I.Krylov Chem.Phys.Lett. 338, 375(2001) closed, unrestricted open shell 2nd order Moller-Plesset - J.A.Pople, J.S.Binkley, R.Seeger Int. J. Quantum Chem. S10, 1-19(1976) M.J.Frisch, M.Head-Gordon, J.A.Pople, Chem.Phys.Lett. 166, 275-280(1990) C.M.Aikens, S.P.Webb, R.L.Bell, G.D.Fletcher, M.W.Schmidt, M.S.Gordon Theoret.Chem.Acc., 110, 233-253(2003) with the TCA "overview article" being a thorough review of the single determinant MP2 gradient equations. CODE=SERIAL is generally based on the CPL paper above, as described in the HONDO references given above. The next two document CODE=DDI for RHF and UHF, G.D.Fletcher, M.W.Schmidt, M.S.Gordon Adv.Chem.Phys. 110, 267-294(1999) C.M.Aikens, M.S.Gordon J.Phys.Chem.A, 108, 3103-3110(2004) The next two document CODE=IMS for RHF, K.Ishimura, P.Pulay, S.Nagase J.Comput.Chem. 27, 407-413(2006) K.Ishimura, P.Pulay, S.Nagase J.Comput.Chem. 28, 2034-2042(2007) The next documents code=RIMP2 for RHF and UHF, M.Katouda, S.Nagase Int.J.Quantum Chem. 109, 2121-2130(2009) Spin Component Scaled MP2 (SCS-MP2) S.Grimme J.Chem.Phys. 118, 9095-9102(2003) spin restricted open shell MP2, ZAPT energy - T.J.Lee, D.Jayatilaka Chem.Phys.Lett. 201, 1-10(1993) T.J.Lee, A.P.Rendell, K.G.Dyall, D.Jayatilaka J.Chem.Phys. 100, 7400-7409(1994) nuclear gradients for ZAPT - The next two document the CODE=DDI program, G.D.Fletcher, M.S.Gordon, R.L.Bell Theoret.Chem.Acc. 107, 57-70(2002) C.M.Aikens, G.D.Fletcher, M.W.Schmidt, M.S.Gordon J.Chem.Phys. 124, 014107/1-14(2006) spin restricted open shell MP2, RMP method - P.J.Knowles, J.S.Andrews, R.D.Amos, N.C.Handy, J.A.Pople Chem.Phys.Lett. 186, 130-136 (1991) W.J.Lauderdale,J.F.Stanton,J.Gauss,J.D.Watts,R.J.Bartlett Chem.Phys.Lett. 187, 21-28(1991) CUMP2 is equivalent to RMP2 (See CUHF reference above). multiconfigurational quasidegenerate perturbation theory - H.Nakano J.Chem.Phys. 99, 7983-7992(1993) ORMAS-based multireference perturbation theory - L.Roskop, M.S.Gordon J.Chem.Phys. 135, 044101/1-11(2012) Coupled-Cluster - Equation of Motion Coupled-Cluster (EOMCC) - this is a subset of the relevant papers: P.Piecuch, S.A.Kucharski, K.Kowalski, M.Musial, Comput.Phys.Commun. 149, 71-96(2002) K.Kowalski, P.Piecuch, J.Chem.Phys. 120, 1715-1738 (2004) P.Piecuch, S.A.Kucharski, K.Kowalski, M.Musial Comput.Phys.Commun. 149, 71-96(2002). parallel CCSD(T) program - J.L.Bentz, R.M.Olson, M.S.Gordon, M.W.Schmidt, R.A.Kendall Comput.Phys.Commun. 176, 589-600(2007) R.M.Olson, J.L.Bentz, R.A.Kendall, M.W.Schmidt, M.S.Gordon J.Comput.Theoret.Chem. 3, 1312-1328(2007) Any publication describing the results of ground-state and/or excited-state calculations using the equation of motion coupled-cluster and/or completely renormalized EOMCCSD(T) options (CCTYP=EOM-CCSD or CR-EOM) obtained with GAMESS should reference the specific papers appearing in the printout. For more references to the primary literature for both types of coupled-cluster methods, see the section "Coupled-Cluster theory" below. RHF/ROHF/TCSCF coupled perturbed Hartree Fock - "Single Configuration SCF Second Derivatives on a Cray" H.F.King, A.Komornicki in "Geometrical Derivatives of Energy Surfaces and Molecular Properties" P.Jorgensen J.Simons, Ed. D.Reidel, Dordrecht, 1986, pp 207-214. "A parallel Distributed data CPHF algorithm for analytic Hessians" Y.Alexeev, M.W.Schmidt, T.L.Windus, M.S.Gordon J.Comput.Chem. 28, 1685-1694(2007). Y.Osamura, Y.Yamaguchi, D.J.Fox, M.A.Vincent, H.F.Schaefer J.Mol.Struct. 103, 183-186(1983) M.Duran, Y.Yamaguchi, H.F.Schaefer J.Phys.Chem. 92, 3070-3075(1988) "A New Dimension to Quantum Chemistry" Y.Yamaguchi, Y.Osamura, J.D.Goddard, H.F.Schaefer Oxford Press, NY 1994 MCSCF coupled perturbed Hartree-Fock - M.R.Hoffman, D.J.Fox, J.F.Gaw, Y.Osamura, Y.Yamauchi, R.S.Grev, G.Fitzgerald, H.F.Schaefer, P.J.Knowles, N.C.Handy J.Chem.Phys. 80, 2660-2668(1984) the book by Osamura, Goddard, and Schaefer just mentioned. T.J.Dudley, R.M.Olson, M.W.Schmidt, M.S.Gordon J.Comput.Chem. 27, 353-362(2006) non-adiabatic coupling matrix element (NACME) - J.C.Tully, chapter 5 (pp 217-267) in "Dynamics of Molecular Collisions - Part B", edited by W.H.Miller, Plenum Press, NY, 1976. B.H.Lengsfield, D.R.Yarkony, chapter 1 (pp. 1-71) in "State-selected and state-to-state in-molecule reaction dynamics- Part 2, theory", edited by M.Baer and C.-Y.Ng, John Wiley, NY, 1992. harmonic vibrational analysis in Cartesian coordinates - W.D.Gwinn J.Chem.Phys. 55,477-481(1971) Normal coordinate decomposition analysis - J.A.Boatz and M.S.Gordon, J.Phys.Chem. 93, 1819-1826(1989). Partial Hessian vibrational analysis - H.Li, J.H.Jensen, Theoret.Chem.Acc. 107, 211-219(2002) anharmonic vibrational spectra (VSCF) - a review of VSCF: R.B.Gerber, J.O.Jung in "Computational Molecular Spectroscopy" P.Jensen, P.R.Bunker, eds. Wiley and Sons, Chichester, 2000, pp 365-390. the basic method for VSCF and cc-VSCF: G.M.Chaban, J.O.Jung, R.B.Gerber J.Chem.Phys. 111, 1823-1829(1999) the QFF approximation: K.Yagi, K.Hirao, T.Taketsugu, M.W.Schmidt, M.S.Gordon J.Chem.Phys. 121, 1383-1389(2004) the VDPT solver: N.Matsunaga, G.M.Chaban, R.B.Gerber J.Chem.Phys. 117, 3541-3547(2002) solver for larger systems: L.Pele, B.Brauer, R.B.Gerber Theoret.Chem.Acc. 117, 69-72(2007) use of internal coordinates, and thermochemistry B.Njegic, M.S.Gordon J.Chem.Phys. 125, 224102/1-12(2006) applications of RUNTYP=VSCF: G.M.Chaban, J.O.Jung, R.B.Gerber J.Phys.Chem.A 104, 2772-2779(2000) J.Lundell, G.M.Chaban, R.B.Gerber Chem.Phys.Lett. 331, 308-316(2000) K.Yagi, T.Taketsugu, K.Hirao, M.S.Gordon J.Chem.Phys. 113, 1005-1017(2000) G.M.Chaban, R.B.Gerber, K.C.Janda J.Phys.Chem.A 105, 8323-8332(2001) A.T.Kowal Spectrochimica Acta A 58, 1055-1067(2002) G.M.Chaban, S.S.Xantheas, R.B.Gerber J.Phys.Chem.A 107, 4952-4956(2003) G.M.Chaban J.Phys.Chem.A 108, 4551-4556(2004) Y.Miller, G.M.Chaban, R.B.Gerber J.Phys.Chem.A 109, 6565-6574(2005) Y.Miller, G.M.Chaban, R.B.Gerber Chem.Phys. 313, 213-224(2005) C.A.Brindle, G.M.Chaban, R.B.Gerber, K.C.Janda Phys.Chem.Chem.Phys. 7, 945-954(2005) G.M.Chaban, R.M.Gerber Theoret.Chem.Acc. 120, 273-279(2008) Raman spectrum - A.Komornicki, J.W.McIver J.Chem.Phys. 70, 2014-2016(1979) G.B.Bacskay, S.Saebo, P.R.Taylor Chem.Phys. 90, 215-224(1984) static polarizabilities: H.A.Kurtz, J.J.P.Stewart, K.M.Dieter J.Comput.Chem. 11, 82-87 (1990) dynamic polarizabilities: P.Korambath, H.A.Kurtz, in "Nonlinear Optical Materials", ACS Symposium Series 628, S.P.Karna and A.T.Yeates, Eds. pp 133-144, Washington DC, 1996. nuclear derivatives of dynamic polarizabilities, and dynamic Raman and hyper-Raman: O.Quinet, B.Champagne J.Chem.Phys. 115, 6293-6299(2001) O.Quinet, B.Champagne B.Kirtman J.Comput.Chem. 22, 1920-1932(2001) O.Quinet, B.Champagne J.Chem.Phys. 117, 2481-2488(2002) O.Quinet, B.Kirtman, B.Champagne J.Chem.Phys. 118, 505-513(2003) Geometry optimization and saddle point location - J.Baker J.Comput.Chem. 7, 385-395(1986). T.Helgaker Chem.Phys.Lett. 182, 503-510(1991). P.Culot, G.Dive, V.H.Nguyen, J.M.Ghuysen Theoret.Chim.Acta 82, 189-205(1992). Dynamic Reaction Coordinate (DRC) - J.J.P.Stewart, L.P.Davis, L.W.Burggraf, J.Comput.Chem. 8, 1117-1123 (1987) S.A.Maluendes, M.Dupuis, J.Chem.Phys. 93, 5902-5911(1990) T.Taketsugu, M.S.Gordon, J.Phys.Chem. 99, 8462-8471(1995) T.Taketsugu, M.S.Gordon, J.Phys.Chem. 99, 14597-604(1995) T.Taketsugu, M.S.Gordon, J.Chem.Phys. 103, 10042-9(1995) M.S.Gordon, G.Chaban, T.Taketsugu J.Phys.Chem. 100, 11512-11525(1996) T.Takata, T.Taketsugu, K.Hirao, M.S.Gordon J.Chem.Phys. 109, 4281-4289(1998) T.Taketsugu, T.Yanai, K.Hirao, M.S.Gordon THEOCHEM 451, 163-177(1998) Energy orbital localization - C.Edmiston, K.Ruedenberg Rev.Mod.Phys. 35, 457-465(1963). R.C.Raffenetti, K.Ruedenberg, C.L.Janssen, H.F.Schaefer, Theoret.Chim.Acta 86, 149-165(1993) Boys orbital localization - S.F.Boys, "Quantum Science of Atoms, Molecules, and Solids" P.O.Lowdin, Ed, Academic Press, NY, 1966, pp 253-262. See the first paper on oriented localized orbitals if you wish to know the true origin of "Boys localization" Population orbital localization - J.Pipek, P.Z.Mezey J.Chem.Phys. 90, 4916(1989). Oriented localized orbitals - J.Ivanic, G.M.Atchity, K.Ruedenberg Theoret.Chem.Acc. 120, 281-294(2008) J.Ivanic, K.Ruedenberg Theoret.Chem.Acc. 120, 295-305(2008) Valence Virtual Orbitals (VVOS) - W.C.Lu, C.Z.Wang, M.W.Schmidt, L.Bytautas, K.M.Ho, K.Ruedenberg J.Chem.Phys. 120, 2629-2637 and 2638-2651(2004) W.C.Lu, C.Z.Wang, T.L.Chan, K.Ruedenberg, K.M.Ho Phys.Rev.B 70, 041101-1/4(2004) Mulliken Population Analysis - R.S.Mulliken J.Chem.Phys. 23, 1833-1840, 1841-1846, 2338-2342, 2343-2346(1955) so called "Lowdin Population Analysis" - This should be described as "a Mulliken population analysis (ref M1-M4 above) based on symmetrically orthogonalized orbitals (ref L)", where reference L is P.-O.Lowdin Adv.Chem.Phys. 5, 185-199(1970) Lowdin populations are not invariant to rotation if the basis set used is Cartesian d,f,...: I.Mayer, Chem.Phys.Lett. 393, 209-212(2004). Bond orders and valences - M.Giambiagi, M.Giambiagi, D.R.Grempel, C.D.Heymann J.Chim.Phys. 72, 15-22(1975) I.Mayer, Chem.Phys.Lett. 97,270-274(1983), 117,396(1985). M.S.Giambiagi, M.Giambiagi, F.E.Jorge Z.Naturforsch. 39a, 1259-73(1984) I.Mayer, Theoret.Chim.Acta 67, 315-322(1985). I.Mayer, Int.J.Quantum Chem. 29, 73-84(1986). I.Mayer, Int.J.Quantum Chem. 29, 477-483(1986). The same formula (apart from a factor of two) may also be seen in equation 31 of the second of these papers (the bond order formula in the 1st of these is not the same formula): T.Okada, T.Fueno Bull.Chem.Soc.Japan 48, 2025-2032(1975) T.Okada, T.Fueno Bull.Chem.Soc.Japan 49, 1524-1530(1976) a review about bond orders: I. Mayer, J.Comput.Chem. 28, 204-221(2007). Direct SCF - J.Almlof, K.Faegri, K.Korsell J.Comput.Chem. 3, 385-399 (1982) M.Haser, R.Ahlrichs J.Comput.Chem. 10, 104-111 (1989) DIIS (Direct Inversion in the Iterative Subspace) - P.Pulay J.Comput.Chem. 3, 556-560(1982) SOSCF - G.Chaban, M.W.Schmidt, M.S.Gordon Theor.Chem.Acc. 97, 88-95(1997) T.H.Fischer, J.Almlof J.Phys.Chem. 96,9768-74(1992) Modified Virtual Orbitals (MVOs) - C.W.Bauschlicher, Jr. J.Chem.Phys. 72,880-885(1980) Thermochemistry (RUNTYP=G3MP2) - G3(MP2,CCSD(T)) is defined in L.A.Curtiss, K.Ragavachari, P.C.Redfern, A.G.Baboul, J.A.Pople Chem.Phys.Lett. 314, 101-107(1999) based on various other G3 basis set/method papers: L.A.Curtiss, P.C.Redfern, K.Raghavachari, V.Rassolov, J.A.Pople J.Chem.Phys. 110, 4703-4709(1999) L.A.Curtiss, P.C.Redfern, K.Raghavachari, V.Rassolov, J.A.Pople J.Chem.Phys. 114, 9287-9295(2001) L.A.Curtiss, P.C.Redfern, K.Raghavachari, V.Rassolov, J.A.Pople J.Chem.Phys. 109,7764-7776(1998) L.A.Curtiss, K.Ragavachari Theoret.Chem.Acc. 108, 61-70(2002) EVVRSP, in memory diagonalization - S.T.Elbert Theoret.Chim.Acta 71,169-186(1987) Davidson eigenvector method - E.R.Davidson J.Comput.Phys. 17,87(1975) "Matrix Eigenvector Methods" p. 95-113 in "Methods in Computational Molecular Physics", edited by G.H.F.Diercksen and S.Wilson, D.Reidel Publishing, Dordrecht, 1983. M.L.Leininger, C.D.Sherrill, W.D.Allen, H.F.Schaefer, J.Comput.Chem. 22, 1574-1589(2001) RESC (Relativistic Elimination of Small Components) - T.Nakajima, K.Hirao Chem.Phys.Lett. 302, 383-391(1999) T.Nakajima, T.Suzumura, K.Hirao Chem.Phys.Lett. 304, 271(1999) D.G.Fedorov, T.Nakajima, K.Hirao Chem.Phys.Lett. 335, 183-187(2001) DK (Douglas-Kroll relativistic transformation) - M.Douglas, N.M.Kroll Ann.Phys. 82, 89-155(1974) B.A.Hess Phys.Rev. A33, 3742-3748(1986) G.Jansen, B.A.Hess Phys.Rev. A39, 6016-6017(1989) T.Nakajima, K.Hirao J.Chem.Phys. 113, 7786-7789(2000) T.Nakajima, K.Hirao Chem.Phys.Lett. 329, 511-516(2000) W.A.DeJong, R.J.Harrison, D.A.Dixon J.Chem.Phys. 114, 48-53(2001) A.Wolf, M.Reiher, B.A.Hess J.Chem.Phys. 117, 9215-26(2002) T.Nakajima, K.Hirao J.Chem.Phys. 119, 4105-4111(2003) (and see just below for DK1 during SOC) IOTC (Infinite-Order Two-Component) relativy correction - M.Barysz, A.J.Sadlej J.Chem.Phys. 116, 2696-2704(2002) M.Barysz, Progress in Theoretical Chemistry and Physics, Kluwer Academic Publishers, 349-397(2002) D.Kedziera, M.Barysz, A.J.Sadlej Struct.Chem. 15, 369-377(2004) D.Kedziera, M.Barysz, J.Chem.Phys. 121, 6719-6727(2004) M.Barysz, L.Mentel, J.Leszczynski J.Chem.Phys. 130, 164114/1-7(2009) LUT-IOTC (local unitary transformation IOTC relativity - J.Seino, H.Nakai J.Chem.Phys. 136, 244101/1-13(2012) J.Seino, H.Nakai J.Chem.Phys. 137, 144101/1-15(2012) Y.Nakajima, J.Seino, H.Nakai J.Chem.Phys. 139, 244107/1-13(2013) J.Seino, H.Nakai Int.J.Quantum Chem. 115, 253-257(2014) NESC (Normalized Elimination of Small Components) - K.G.Dyall J.Comput.Chem. 23, 786-793(2002) Spin-orbit coupling and transition moments ? Many references can be found in the section on this topic below. GIAO NMR - R.Ditchfield Mol.Phys. 27, 789-807(1974) M.A.Freitag, B.Hillman, A.Agrawal, M.S.Gordon J.Chem.Phys. 120, 1197-1202(2004) Solvation models: EFP, SCRF, PCM, or COSMO. All appropriate references are included in the sections on these topics included below. MOPAC 6 - J.J.P.Stewart J.Computer-Aided Molecular Design 4, 1-105 (1990) References for parameters for individual atoms may be found on the printout from your runs. MacMolPlt - B.M.Bode, M.S.Gordon J.Mol.Graphics Mod. 16, 133-138(1998) quantum chemistry parallelization in GAMESS - for SCF, see the main GAMESS paper quoted above. T.L.Windus, M.W.Schmidt, M.S.Gordon, Chem.Phys.Lett. 216, 375-379(1993) T.L.Windus, M.W.Schmidt, M.S.Gordon, Theoret.Chim.Acta 89, 77-88 (1994) T.L.Windus, M.W.Schmidt, M.S.Gordon, in "Parallel Computing in Computational Chemistry", ACS Symposium Series 592, Ed. by T.G.Mattson, ACS Washington, 1995, pp 16-28. K.K.Baldridge, M.S.Gordon, J.H.Jensen, N.Matsunaga, M.W.Schmidt, T.L.Windus, J.A.Boatz, T.R.Cundari ibid, pp 29-46. G.D.Fletcher, M.W.Schmidt, M.S.Gordon Adv.Chem.Phys. 110, 267-294 (1999) H.Umeda, S.Koseki, U.Nagashima, M.W.Schmidt J.Comput.Chem. 22, 1243-1251 (2001) C.H.Choi, K.Ruedenberg J.Comput.Chem. 22, 1484-1501(2001) D.G.Fedorov, M.S.Gordon ACS Symp.Series 828, 1-22(2002) H.Li, C.S.Pomelli, J.H.Jensen Theoret.Chem.Acc. 109, 71-84(2003) C.M.Aikens, M.S.Gordon J.Phys.Chem.A 108, 3103-3110(2004) H.M.Netzloff, M.S.Gordon J.Comput.Chem. 25, 1926-1936(2004) T.J.Dudley, R.M.Olson, M.W.Schmidt, M.S.Gordon J.Comput.Chem. 27, 353-362(2006) C.M.Aikens, G.D.Fletcher, M.W.Schmidt, M.S.Gordon J.Chem.Phys. 124, 014107/1-14(2006) Y.Alexeev, M.W.Schmidt, T.L.Windus, M.S.Gordon J.Comput.Chem. 28, 1685-1694(2007). R.M.Olson, J.L.Bentz, R.A.Kendall, M.W.Schmidt, M.S.Gordon J.Comput.Theoret.Chem. 3, 1312-1328(2007) J.L.Bentz, R.M.Olson, M.S.Gordon, M.W.Schmidt, R.A.Kendell Comput.Phys.Commun., 176, 589-600 (2007). G.D.Fletcher Mol.Phys. 105, 2971-2976(2007) The Distributed Data Interface (DDI), which is the computer science layer underneath the parallel quantum chemistry - G.D.Fletcher, M.W.Schmidt, B.M.Bode, M.S.Gordon Comput.Phys.Commun. 128, 190-200 (2000) R.M.Olson, M.W.Schmidt, M.S.Gordon, A.P.Rendell Proc. of Supercomputing 2003, IEEE Computer Society. This does not exist on paper, but can be downloaded at http://www.sc-conference.org/sc2003/tech_papers.php D.G.Fedorov, R.M.Olson, K.Kitaura, M.S.Gordon, S.Koseki J.Comput.Chem. 25, 872-880(2004).