!  EXAM 39.
!  The non-resonant Raman and hyper-Raman spectra of CH4
!
!  This run generates results similar to four published papers,
!  although the basis set in this test is much smaller.  This
!  run (3-21G) can be run in a few seconds, making it suitable
!  for a GAMESS test input, but not for publishable results.
!
!  The basis set for polarizabilities should be large, and have
!  appreciable diffuse character.  Good choices are the Sadlej
!  basis set named POL, or augmented-cc-pVDZ (GBASIS=ACCD).
!  The 3-21G run takes 10 seconds on a certain computer, short
!  enough to be a test case, whereas ACCD takes 1217 seconds.
!
!  dAlpha/dx and dBeta/dX are computed by iterative and non-
!  iterative means, to be sure that they get the same results.
!
!  The log file contains the following things, in this order.
!  Search on the phrase "procedure to xcompute", with no x, for
!      Iterative procedure to xcompute      Alpha(-0.04; 0.04)
!      Iterative procedure to xcompute   dAlphadX(-0.04; 0.04)
!  Non-Iterative procedure to xcompute   dAlphadX(-0.04; 0.04)
!  Non-Iterative procedure to xcompute         Mu
!      Iterative procedure to xcompute       Beta(-0.08; 0.04, 0.04)
!      Iterative procedure to xcompute    dBetadX(-0.08; 0.04, 0.04)
!      Iterative procedure to xcompute      Alpha( 0.08;-0.08)
!      Iterative procedure to xcompute       Beta( 0.04;-0.08, 0.04)
!  Non-Iterative procedure to xcompute    dBetadX(-0.08; 0.04, 0.04)
!      Iterative procedure to xcompute       Beta( 0.00;-0.04, 0.04)
!  Non-Iterative procedure to xcompute d2AlphadX2(-0.04; 0.04)
!      Iterative procedure to xcompute      Gamma( 0.00;-0.08, 0.04,0.04)
!      Iterative procedure to xcompute   dAlphadX( 0.08;-0.08)
!  Non-Iterative procedure to xcompute  d2BetadX2(-0.08; 0.04, 0.04)
!
!  ==================================================================
!  A. Table 3 in paper number 1,
!     O.Quinet, B.Champagne  JCP  115,2481(2002)
!  can be compared to the results from this run, of:
!
!      Alpha tensor [in au]( -0.040000;  0.040000)
!                   x                y                z
!        x.        11.502812        -0.000000         0.000000
!        y.        -0.000000        11.502812        -0.000000
!        z.         0.000000        -0.000000        11.502811
!    
!      Mean       :       11.502812
!      Anisotropy :        0.000000
!
!  as well as
!
!        mode    6(3186.7 cm^-1)( -0.040000;  0.040000)
!                   x                y                z
!        x.         0.137838        -0.000000        -0.000000
!        y.        -0.000000         0.137838         0.000000
!        z.        -0.000000         0.000000         0.137838
!    
!      Mean       :        0.137838
!      Anisotropy :        0.000000
!    
!      Raman
!       Ak=    1.647939 Gk=    0.000002
!       Intensity=  122.2066
!       l-depolarization ratio=0.0000
!       n-depolarization ratio=0.0000
!
!  The mean 11.50 is to be compared to 16.09, and the mean 0.138 to
!  the 0.191 in this table.  The difference is due to the basis set.
!
!  Table 6 also in paper 1 can be compared to:
!     Raman Intensity at Omega =   0.040000
!         Intensity expressed in [Ang.^4/AMU]
!      ----------------------------------------------------------------
!        Freq  |Mult|  Intensity     (%)  |l-depol ratio|n-depol ratio
!       [cm^-1]|    |                     |             |
!      ----------------------------------------------------------------
!        1520.3|  3.|         9.29 (  5.2)|     0.750000|     0.857143
!        1739.8|  2.|        78.39 ( 44.2)|     0.750000|     0.857143
!        3186.7|  1.|       122.21 ( 68.8)|     0.000000|     0.000000
!        3280.0|  3.|       177.56 (100.0)|     0.750000|     0.857143
!      ----------------------------------------------------------------
!
!  aug-cc-pVDZ gives
!       frequency= 1423.6    1637.6   3152.7   3266.1
!       Intensity=   0.03      7.78   226.85   160.44
!  which are much closer to the published POL result.  To run this,
!  use GBASIS=ACCD, MWORDS=10, ISPHER=1, and x=y=z=0.6289602528 
!
!  ==================================================================
!  B. Table 3 in paper number 2,
!     O.Quinet, B.Champagne, B.Kirtman   JCC 22, 1920(2001)
!  can be compared to the results from this run, for d2Alpha/dX2:
!
!       dQ(   6)(w=3186.7 cm^-1)dQ(   6)(w=3186.7 cm^-1)( -0.040000;  0.040000)
!                  x                y                z
!       x.         0.001616         0.000000        -0.000000
!       y.         0.000000         0.001616         0.000000
!       z.        -0.000000        -0.000000         0.001616
!   
!     Mean       :        0.001616
!     Anisotropy :        0.000000
!
!  The mean of 0.001616 is to be compared to the table's 0.002132.
!  The 16.09 for dAlpha/dX was already reported in the 1st paper.
!
!  Table 6 in paper 2 cannot be directly compared.  The zero
!  point value averaged results require a portion of the third
!  nuclear derivative, E-abb, in addition to the polarizability
!  derivative tensors computed analytically here.  The paper
!  obtained third nuclear deriviatives numerically, from E-ab,
!  with a special code that is not included here.
!
!  ==================================================================
!  C. Table 3 in paper number 3,  (this paper uses 0.042823, not 0.04)
!     O.Quinet, B.Champagne  JCP  117,2481(2002)
!  can be compared to the results from this run, of:
!
!       mode    6(3186.7 cm^-1)(  -.080000;   .040000,   .040000)
!                  x                y                z
!      xx.          .000000          .000000          .000000
!      xy.          .000000          .000000         -.593060
!      xz.          .000000         -.593060          .000000
!      yx.          .000000          .000000         -.593060
!      yy.          .000000          .000000          .000000
!      yz.         -.593060          .000000          .000000
!      zx.          .000000         -.593060          .000000
!      zy.         -.593060          .000000          .000000
!      zz.          .000000          .000000          .000000
!   
!     x   :         .000000  B(i)=(B(i,j,j)+B(j,i,j)+B(j,j,i))/5
!     y   :         .000000
!     z   :         .000000
!     BAR :         .000000  BAR=B(i)*MU(i)/|MU|
!   
!     x   :         .000000  B(i)=(B(i,j,j)+B(j,i,j)+B(j,j,i))/3
!     y   :         .000000
!     z   :         .000000
!     VEC :         .000000  norm of Beta VEC
!   
!     hyper-Raman
!      Biii^2=     .120590 Bijj^2=     .080393 Bijk^2=     .000000
!      Intensity=  976.5023
!      l-depolarization ratio= .8000
!      n-depolarization ratio= .6667
!
!  The -0.5930 is to be compared to the Table's -0.3532.  The A,B,C
!  values are obtained by least squares fitting to several runs,
!  stepping w from 0.00, 0.02, 0.04, ... 0.10 (see eq. 18 and 19)
!
!  Table 6 in the same paper can be compared to:
!    Hyper Raman Intensity at Omega =   0.040000
!        Intensity expressed in [Ang.^6 AMU^-1 StatVolt^-2]
!     ----------------------------------------------------------------
!       Freq  |Mult|  Intensity     (%)  |n-depol ratio|p-depol ratio
!      [cm^-1]|    |                     |             |
!     ----------------------------------------------------------------
!       1520.3|  3.|       616.32 ( 63.1)|     0.266253|     0.153571
!       1739.8|  2.|         0.01 (  0.0)|     2.000000|*************
!       3186.7|  1.|       976.50 (100.0)|     0.800000|     0.666667
!       3280.0|  3.|       845.50 ( 86.6)|     0.490350|     0.324810
!     ----------------------------------------------------------------
!
!  The 976.50 is to be compared to 346.4 in the published table,
!  with the large discrepancy due to the small basis set used here.
!  The aug-cc-pVDZ results are much closer to the table,
!       frequency= 1423.6    1637.6   3152.7   3266.1
!       Intensity= 127.94      0.00   413.96  2063.99
!
!  ==================================================================
!  D. Table 3 in paper number 4,
!     O.Quinet, B.Kirtman, B.Champagne  JCP  118,505(2003)
!  can be compared to the results from this run, of:
!
!       dQ(   6)(w=3186.7 cm^-1)dQ(   6)(w=3186.7 cm^-1)
!                            (  -.080000;   .040000,   .040000)
!                  x                y                z
!      xx.          .000000          .000000          .000000
!      xy.          .000000          .000000         -.009749
!      xz.          .000000         -.009749          .000000
!      yx.          .000000          .000000         -.009749
!      yy.          .000000          .000000          .000000
!      yz.         -.009749          .000000          .000000
!      zx.          .000000         -.009749          .000000
!      zy.         -.009749          .000000          .000000
!      zz.          .000000          .000000          .000000
!   
!     x   :         .000000  B(i)=(B(i,j,j)+B(j,i,j)+B(j,j,i))/5
!     y   :         .000000
!     z   :         .000000
!     BAR :         .000000  BAR=B(i)*MU(i)/|MU|
!   
!     x   :         .000000  B(i)=(B(i,j,j)+B(j,i,j)+B(j,j,i))/3
!     y   :         .000000
!     z   :         .000000
!     VEC :         .000000  norm of Beta VEC
!
!   in which the -0.0097 compares to -0.3532.
!   Again the dispersion coefficients require fitting to multiple
!   runs which step through w, and the ZPVA results require part
!   of the third nuclear derivatives, not just the above tensor.
!

 $contrl scftyp=rhf runtyp=tdhfx nosym=1 ispher=0 $end
 $system timlim=3 $end
 $basis  gbasis=n21 ngauss=3 $end
 $guess  guess=huckel $end
 $scf    dirscf=.true. conv=1d-6 $end
 $force  method=analytic  $end
 $cphf   cphf=AO polar=.false. $end
 $tdhfx
   FREQ2
   DADX 0.04
   DADX_NI 0.04
   DBDX 0.04 0.04
   DBDX_NI 0.04 0.04
   RAMAN 0.04
   HRAMAN 0.04
   D2ADX2_NI 0.04
   D2BDX2_NI 0.04 0.04
 $end
 $data
methane RHF
Td

C     6.0   0.0            0.0            0.0
H     1.0   0.6252197764   0.6252197764   0.6252197764
 $END

Link to the log file of this example.
exam39 Log File


created on 6/20/2013